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Given a network and a partition in communities, we consider the issues “how communities influence each
other” and “when two given communities do communicate.” Specifically, we address these questions in the
context of small-world networks, where an arbitrary quenched graph is given and long-range connections are
randomly added. We prove that, among the communities, a superposition principle applies and gives rise to a
natural generalization of the effective field theory already presented by M. Ostilli and J. F. F. Mendes �Phys.
Rev. E 78, 031102 �2008�� �n=1�, which here �n�1� consists in a sort of effective TAP �Thouless, Anderson,
and Palmer� equations in which each community plays the role of a microscopic spin. The relative suscepti-
bilities derived from these equations calculated at finite or zero temperature, where the method provides an
effective percolation theory, give us the answers to the above issues. Unlike the case n=1, asymmetries among
the communities may lead, via the TAP-like structure of the equations, to many metastable states whose
number, in the case of negative shortcuts among the communities, may grow exponentially fast with n. As
examples we consider the n Viana-Bray communities model and the n one-dimensional small-world commu-
nities model. Despite being the simplest ones, the relevance of these models in network theory, as, e.g., in
social networks, is crucial and no analytic solution were known until now. Connections between percolation
and the fractal dimension of a network are also discussed. Finally, as an inverse problem, we show how, from
the relative susceptibilities, a natural and efficient method to detect the community structure of a generic
network arises.
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I. INTRODUCTION

In the last decade we have seen an impressive growth of
the network’s science and of its broad range of applications
in fields as diverse as physics, biology, economy, sociology,
neuroscience, etc. �1–5�. Many analytical and numerical
methods to investigate the statistical properties of networks,
such as degree distribution, clustering coefficient, percola-
tion, and critical phenomena at finite temperature, as well as
dynamical processes, are nowadays available �see �6� and
references therein�. In particular, in recent times, the issue to
find the “optimal” community structure that should be
present in a given random graph �a network� �L ,��, L and �
being the set of the vertices and of the bonds, respectively,
has received much attention. The general idea behind the
community structure of a given network comes from the ob-
servation that in many situations real data show an intrinsic
partition of the vertices of the graph in n groups, called com-
munities, L=�l=1

n L�l�, such that between any two communi-
ties there is a number of bonds that is relatively small if
compared with the number of bonds present in each commu-
nity. If we indicate by ��l,k� the set of bonds connecting the
lth and the kth communities, we can formally express the
above idea by using the decomposition �=�l�k=1

n ��l,k�, and
the inequality ���l,k��� ���l�� , ���k��, for l�k. The partition�s�
can be used to build a higher-level metanetwork where the
metanodes are now the communities �cells, proteins, groups
of people, etc.� and play important roles in unveiling the
functional organization inside the network. In order to detect
the community structure of a given network, many methods
have been proposed and special progresses have been made
by mapping the problem for identifying community struc-

tures to optimization problems �7–13�, by looking for
k-clique subgraphs �14�, or by looking for clustering desyn-
chronization �15� and, very recently, by using random walks
�16�. In general there is not a unique criterion to find the
community’s structure �17�. However, once obtained some
structure, whatsoever the method used, and assuming that the
found partition ��l=1

n L�l� ,�l�k=1
n ��l,k�� represents sufficiently

well the intrinsic community structure of the given network
�18�, there is still left the fundamental issue about the true
relationships among these communities. Under which condi-
tions, and how much two given communities communicate,
how they influence each other, positively or negatively, what
is the typical state of a single community, what is the ex-
pected behavior for n large, etc. are all issues that cannot be
addressed by simply using the above methods to detect the
community structure. In fact, all these methods, with the ex-
ception of Refs. �7,15,16�, are essentially based only on
some topological analysis of the network, and in most cases,
only local topological properties are taken into account. The
way to uncover the real communication among the commu-
nities is to pose over the graph �L ,�� a minimal model in
which the vertices assume at least two states, i.e., as the spins
in an Ising model. Confining the problem to the equilibrium
case we have hence to use the Gibbs-Boltzmann statistical
mechanics and find the relative susceptibilities ��l,k� among
the communities of a suitable Ising model. In this approach
the temperature T can be seen as a parameter describing the
freedom of the vertices to assume a state independently of
the state of the other vertices, while the coupling Ji,j

�l,k� be-
tween two vertices i and j belonging to the lth and kth com-
munities, respectively, as a tendency of the vertices to be
positively or negatively correlated, according to the ampli-
tude and to the sign of Ji,j

�l,k�.
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We point out that, given a community structure, our main
aim is to calculate the magnetizations m�l� and the relative
susceptibilities ��l,k� of the communities, while Refs.
�7,15,16� treat the quite different problem of detecting the
community structure by looking for the partition of the graph
that, among the communities, minimizes the correlations, the
synchronization, or the diffusion, respectively. Although this
is a natural and interesting way for defining a community
structure, and to which we devote a study in this paper too
and find some connections with �16�, in many situations the
obtained partition does not correspond to the intrinsic parti-
tion of the graph �50�.

At least in principle, if a Gibbs-Boltzmann exp�−�H� dis-
tribution with some Hamiltonian H has been assumed, one
can obtain �Ji,j

�l,k� from the data of the given graph by isolat-
ing the two vertices i and j from all vertices of the graph
other than them, and by measuring the correlation function
of the obtained isolated dimer �	i	 j��, where � · �� stands for
the Gibbs-Boltzmann average of the isolated dimer �51�. The
general problem is actually more complicated due to the
presence of two sources of disorder since both the set of the
bonds � and the single couplings �Ji,j

�l,k�	 may change with
time. Assuming that the time scale over which these changes
take place is much larger than that of the thermal vibrations
of the spins, we have then to face a disordered Ising model
with quenched disorder.

In this paper we specialize this general problem to the
case of Poissonian disorder of the graph, while we leave the
disorder of the couplings arbitrary. We formulate the problem
in terms of Ising models on generic small-world graphs �19�:
given an arbitrary graph �L0 ,�0�, the pure graph, and a com-
munity structure ��l=1

n L0
�l� ,�l�k=1

n �0
�l,k��, in which each com-

munity has an arbitrary size, we consider a generic Ising
Hamiltonian H0 defined on this nonrandom �quenched� struc-
ture, the pure model, characterized by arbitrary couplings
J0

�l,k�, and we add some random connections �shortcuts� with
average connectivities c�l,k�, along which a random coupling
J�l,k� takes place, and study the corresponding random Ising
model, the random model, having therefore a random Hamil-
tonian H.

In �20� we established a new general method to analyze
critical phenomena on small-world models: we found an ef-
fective field theory that generalizes the Curie-Weiss mean-
field theory via the equation

m�
� = m0��J0
�
�,�J�
�m�
�� , �1�

and that is able to take into account both the infinite and
finite dimensionalities simultaneously present in small-world
models. In Eq. �1�, m0��J0 ;�h� represents the magnetization
of the pure model, i.e., without shortcuts, supposed known as
a function of the short-range coupling J0 and arbitrary exter-
nal field h, whereas the symbol 
 stands for the ferrolike
solution, 
=F, or the spin glasslike solution, 
=SG, and J0

�
�

and J�
� are effective couplings. Here we generalize this re-
sult to the present case of n communities of arbitrary sizes
and interactions; short-range and long-range �or shortcuts�
couplings. We show that, among the communities, a natural
superposition principle applies and we find that the n order
parameters, F or SG like, obey a system of equations which,

apart from the absence of the Onsager’s reaction term �21�,
can be seen as an n�n effective system of TAP �Thouless,
Anderson, and Palmer� equations �22� in which each com-
munity plays the role of a single “microscopic”-spin m�
;l�,
l=1, . . . ,n and, depending on the sign of the couplings, be-
have as spins immersed in a ferro or glassy material.

As for one single community, our method is exact in the
paramagnetic region �P� �more precisely is exact in the re-
gion where any order parameter is zero� and provides an
effective approximation in the other regions, becoming exact
for unfrustrated disorders even off the P region in the limits
c�l,k�→0+ and c�l,k�→�. In Ref. �20� �n=1� we established
the general scenario of the critical behavior coming from
these equations, stressing the differences between the cases
J00 and J0�0, the former being able to give only second-
order phase transitions with classical critical exponents,
whereas the latter being able to give rise, for a sufficiently
large connectivity c, to multicritical points with also first-
order phase transitions. The same scenario essentially takes
place also for n2 provided that the J0’s and the J’s be
almost the same for all the communities �and in fact in this
case, i.e., near the homogeneous case, the partition in n com-
munities does not turn out to be very meaningful and taking
n=1 would lead to almost the same result�; otherwise many
other situations are possible. In particular, unlike the case n
=1, relative antiferromagnetism between two communities l
and k is possible as soon as the J�l,k� have negative averages;
while internal antiferromagnetism inside a single community,
say the lth one, due to the presence of negative couplings
J0

�l��0, is never possible as soon as disorder is present. Less
intuitive and quite interestingly, if we try to connect ran-
domly with some added connectivity c�l,k� the lth community
having inside only positive couplings �“good”� to the kth
community having inside only negative couplings �“bad”�,
not only the bad community gains a nonzero order, but even
the already good community gets an improved order.

However, with respect to the case n=1, another peculiar
feature to take into account is the presence of many meta-
stable states. In fact, this is a general feature of the TAP-like
structure of the equations: as we consider systems with an
increasing number of communities, the number of metastable
states grows with n and may grow exponentially fast in the
case of negative shortcuts. A metastable state can be made
virtually stable �or, more precisely leading� by forcing the
system with appropriate initial conditions, by fast cooling, or
by means of suitable external fields. As a result, with respect
to variations in the several parameters of the model �cou-
plings, connectivities, and sizes of the communities�, the
presence of metastable states may lead itself to first-order
phase transitions even when the J0 are all non-negative. This
general mechanism has been already studied in the simplest
version of these models, namely, the n=2 Curie-Weiss model
�J0=0 and c�1,2�=��, where a first-order phase transition was
observed to be tuned by the relative sizes of the two com-
munities and by the external fields �23�; moreover, first-order
phase transitions have been observed in numerical simula-
tions of a two-dimensional small-world model with directed
shortcuts �24,52�. In particular, in system of many commu-
nities, n�1, a remarkable and natural presence of first-order
phase transitions �tuned by the several parameters� is ex-
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pected which, if the J’s or the J0’s are negative, reflects on
the fact that the communities, at sufficiently low tempera-
ture, behave as spins in an effective glassy state �25,26�.

Finally, we show that the theory can be projected at zero
temperature where a natural effective percolation theory
arises. Then, in this limit, a quantity of remarkable impor-
tance, the relative susceptibility among the communities, is
provided and we will show that, by starting from the data of
the network, it can be efficiently sampled via simulated an-
nealing procedures. Such a quantity in fact tells us in a not
ambiguous manner whether two given communities l and k
do communicate or not, and what their characteristic time
t�l,k� to exchange a unit of information is. It will become clear
that, given the pure graph, unlike a local analysis �based
therefore only an elementary use of the adjacency matrix�
might say, the presence of some bonds �0

�l,k� between the two
communities does not guarantee that they communicate, i.e.,
that be t0

�l,k���. More in general, it will become clear that
even a minimal model such as the one we introduce, due to
the fact that it incorporates exactly all the correlations, short-
and long-range like, can give rise to situations which drasti-
cally differ from methods in which only a local analysis of
the bonds is taken into account and/or correlations �including
their signs� are never introduced.

As mentioned before, as a byproduct, we show also that,
in particular, the percolation theory provides itself another
natural way to detect community structures. More precisely,
similarly to what done in �16�, we can define a family of
generalized modularity functions �8� able to probe the com-
munity structure of the given network, pure or random, at
several length scales. We will see that the algorithm of this
method turns out to be statistically efficient in the limit of
small and infinite length scales.

In this paper, as first analytical applications of the method,
we consider two important class of models: the generalized
Viana-Bray �VB� model �27� and its special limits of infinite
connectivity, i.e., the generalized Curie-Weiss �CW� and the
generalized Sherrington-Kirkpatrick �SK� models �28�, and
the generalized one-dimensional small-world models for n
communities. A complete analysis of these two class of mod-
els is beyond the aim of this paper since a deeper study, also
equipped with some numerical analysis of the self-consistent
equations and, more in general, of the minima of the associ-
ated Landau free energy density, would be required. Notice
however that, without any intention to be exhaustive in citing
the large literature on the subject, the state of the art of
analytical methods for disordered Ising models defined over
Poissonian small-world graphs results nowadays as follows:
�i� in the case of no short-range couplings, J0=0, and for one
community, n=1, modulo a large use of some population
dynamics algorithm for low temperatures, the replica
method, and the cavity method �25,29–31� have established
the base to solve exactly the model in any region of the
phase diagram, even rigorously in the SK case �32,33� and in
unfrustrated cases �34�; �ii� for J0�0 and n=1 these methods
have been successfully applied to the one-dimensional case
�35,36� but a generalization to higher dimensions �except
infinite dimensions �37�� seems impossible due to the pres-
ence of loops of any length �53�; on the other hand, even if it
is exact only in the P region, the method we have presented

in Ref. �20�, modulo solving analytically or numerically a
nonrandom Ising model, can be exactly applied in any di-
mension, and more in general to any underlying pure graph
�L0 ,�0�; and �iii� for J0=0 and n2, the problem was
solved only in the limit of infinite connectivity: exactly in the
n=2 CW case in its general form, which includes arbitrary
sizes of the two communities, but with no coupling disorder
�23�; and, within the replica-symmetric solution, in the ge-
neric n SK case, but only in the presence of a same mutual
interaction among the n communities of same size �38,39�.
Out of this range of models, no method was known to face
analytically the general problem with finite connectivities, in
arbitrary dimension d0, and with a general disorder, despite
its relevance in network theory, as, e.g., in social networks
�54�.

The paper is organized as follows. In Sec. II we introduce
the small-world communities network over which we define
the random Ising models. In Sec. III we present the result: in
Sec. III A we provide the self-consistent equations, the cor-
relation functions, the Landau free energy density and the
relative susceptibilities; in Sec. III B we analyze the phase
transition scenario; in Sec. III C we discuss the level of ac-
curacy of the method. In Sec. IV we apply the method to the
above mentioned example cases �CW, SK, VB, and one-
dimensional models�. In Sec. V we consider the theory at
zero temperature obtaining the percolation theory and the
characteristic times of communication among communities.
In this section, as byproducts, we show an interesting con-
nection with the concept of fractal dimension and how to
detect a community structure within our framework. Sections
VI and VII are devoted to the proof. Finally in Sec. VIII
some conclusions are drawn �61�.

II. RANDOM ISING MODELS ON SMALL-WORLD
COMMUNITIES

Let be given n distinct graphs �L0
�l� ,�0

�l��, l=1, . . . ,n, L0
�l�

and �0
�l� being the set of vertices and bonds of the lth graph,

respectively �55�. Elements of a set of vertices L0
�l� will be

indicated with Latin index i or j, whereas elements of a set of
bonds �0

�l� will be indicated as couples �i , j�. Let the size of
L0

�l� be

�L0
�l�� = N�l� = ��l�N , �2�

where the ��l�’s are n non-negative numbers such that �56�



l

��l� = 1. �3�

Moreover, let be given other n�n−1� /2 distinct graphs
�L0

�l,k� ,�0
�l,k��, l�k, with l ,k=1, . . . ,n, where L0

�l,k�

=
def

L0
�l��L0

�k� is the sum set of the vertices of L0
�l� and L0

�k�, and
�0

�l,k� is an arbitrary set of bonds connecting some vertices of
L0

�l� with some vertices of L0
�k�.

Given, for each community, an Ising model—shortly the
pure model of the community with Hamiltonian

COMMUNICATION AND CORRELATION AMONG COMMUNITIES PHYSICAL REVIEW E 80, 011142 �2009�

011142-3



H0
�l� =

def

− 

�i,j���0

�l�
J0;�i,j�

�l� 	i	 j − h�l� 

i�L0

�l�
	i, �4�

let be

H0 =
def



l

H0
�l� − 


l�k



�i,j���0
�l,k�

J0;�i,j�
�l,k� 	i	 j , �5�

where the h�l� are arbitrary external fields and J0;�i,j�
�l� ’s and the

J0;�i,j�
�l,k� ’s are arbitrary “short-range” couplings. From now on,

for shortness, we will use for them the simpler notations J0
�l�’s

and the J0
�l,k�’s, respectively, as if they were uniform cou-

plings. However, it should be kept in mind that there is no
limitation in the choices of these couplings, as well as in the
choice of the graphs �L0

�l� ,�0
�l�� and �L0

�l,k� ,�0
�l,k��.

Let be given n+n�n−1� /2 independent random graphs
c�l,k�, l�k=1, . . . ,n. We will indicate by c�l,l� the average
connectivity of the graph c�l,l� �average with respect to a
measure P�c� we soon prescribe�, and by c�l,k� and c�k,l� the
two directed average connectivities of the graph c�l,k� count-
ing how many bonds, in the average, connect a given vertex
of L0

�l� with vertices of L0
�k�, and vice versa, respectively. Due

to their definition, for l�k, c�l,k� and c�k,l� are not indepen-
dent, in fact it must hold the following balance equation:

N�l�c�l,k� = N�k�c�k,l�, �6�

or else, by using Eq. �2�,

��l�c�l,k� = ��k�c�k,l�. �7�

Equation �7� suggests to define the following symmetric ma-
trix which we will soon use:

c̃�l,k� =
def

��l�c�l,k�, ∀ l,k = 1, . . . ,n . �8�

Besides the constrains �Eq. �7��, it is important to recall that,
for finite N, the connectivities are bounded as follows:

0 � c�l,k� � ��k�N , �9�

or else, by using the symmetric matrix

0 � c̃�l,k� � ��l���k�N . �10�

We will use the symbol ci,j
�l,k� to indicate the adjacency

matrix elements of the graph c�l,k�: ci,j
�l,k�=0,1, i�L0

�l�, j
�L0

�k�. The symbol c will indicate the graph obtained as
union of all the n+n�n−1� /2 graphs c�l,k�, l� ,k=1, . . . ,n.

We now define our small-world models. For each l we
superimpose the bonds of the random graph c�l,l� to connect,
through certain shortcuts, some vertices of L0

�l�, and for each
couple �l ,k� we superimpose the bonds of the random graph
c�l,k� to connect, through certain shortcuts, some vertices of
L0

�l� with some vertices of L0
�l�, and define the corresponding

small-world model on the n communities—shortly the ran-
dom model—as described by the following Hamiltonian:

Hc;J =
def

H0 − 

l



i�j,i,j�L0

�l�
cij

�l,l�Jij
�l,l�	i	 j

− 

l�k



i�L0

�l�,j�L0
�k�

cij
�l,k�Jij

�l,k�	i	 j , �11�

the free energy F and the averages �O�l, with l=1,2, being
defined in the usual �quenched� way as

− �F =
def



c

P�c� � dP�J�log�Zc;J� �12�

and

�O�l =
def



c

P�c� � dP�J��O�l, l = 1,2, �13�

where Zc;J is the partition function of the quenched system

Zc;J = 

�	i	

e−�Hc;J���	i		�, �14�

�O�c;J is the Boltzmann-average of the quenched system
�note that �O�c;J depends on the given realization of the J’s
and of c: �O�= �O�c;J; for shortness we will often omit to
write these dependencies�

�O� =
def 
�	i	

Oc;Je−�Hc;J��	i	�

Zc;J
, �15�

and dP�J� and P�c� are two product measures given in terms
of n+n�n−1� /2 normalized measures, d��l,k��Ji,j

�l,k��0 and
other n+n�n−1� /2 normalized measures p�l,k��ci,j

�l,k��0, re-
spectively,

dP�J� =
def

�
l

�
i�j,i,j�L0

�l�
d��l,l��Ji,j

�l,l��

� �
l�k

�
i�L0

�l�,j�L0
�k�

d��l,k��Ji,j
�l,k�� � d��l,k��Ji,j

�l,k�� = 1,

�16�

P�c� =
def

�
l

�
i�j,i,j�L0

�l�
p�l,l��ci,j

�l,l��

� �
l�k

�
i�L0

�l�,j�L0
�k�

p�l,k��ci,j
�l,k�� 


ci,j
�l,k�=0,1

p�ci,j
�l,k�� = 1.

�17�

The variables ci,j
�l,k�� �0,1	 specify whether a “long-range”

bond between the sites i�L0
�l� and j�L0

�k� is present �ci,j
�l,k�

=1� or absent �ci,j
�l,k�=0�, whereas the Ji,j

�l,k�’s are the random
couplings of the given bond �i , j�. For l�k, the probability
p�l,k� to select a bond connecting L0

�l� with L0
�k� among all the

possible N�l�N�k� bonds is given by p�l,k�= c̃�l,k� / �N��l���k��.
Therefore the random variables ci,j

�l,k�’s obey the following
distributions:
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p�cij
�l,k�� =

c̃�l,k�

N��l���k��cij
�l,k�,1 + 1 −

c̃�l,k�

N��l���k���cij
�l,k�,0, �18�

which, for l=k reduces to

p�cij
�l,l�� =

c�l,l�

N��l��cij
�l,l�,1 + 1 −

c�l,l�

N��l���cij
�l,l�,0. �19�

Notice that the matrix entering Eq. �18� is the symmetric one
and not c�l,k�; however, in the thermodynamic limit N→�,
for each �l ,k�, the degree random variables

ci
�l,k� =

def



j�L0

�k�
ci,j

�l,k�, i � L0
�l�, �20�

will be distributed according to a Poissonian law with the
directed average connectivity c�l,k�.

Concerning the measures d��l,k�, they are completely ar-
bitrary. When necessary, to be more specific in considering
some example, we shall assume one of the following typical
measures:

d��l,k�

dJi,j
�l,k� = ��Ji,j

�l,k� − J�l,k�� , �21�

d��l,k�

dJi,j
�l,k� =

1

2
��Ji,j

�l,k� − J�l,k�� +
1

2
��Ji,j

�l,k� + J�l,k�� , �22�

d��l,k�

dJi,j
�l,k� =� N

2�J̃�l,k�
exp�−

Ji,j
�l,k� −

J�l,k�

N
�2

2J̃�l,k�
N� , �23�

where the parameters J�l,k� �not to be confused with the ran-

dom variables Ji,j
�l,k�� are arbitrary, and J̃�l,k��0.

III. EFFECTIVE FIELD THEORY

A. Self-consistent equations for n communities

Physically, depending on the temperature T, and on the
parameters of the probability distributions �d��l,k�	 and the
connectivities �cl,k	, the random model may stably stay either
in the phases P, F, SG, or AF �paramagnetic, ferromagnetic,
spin glass, or antiferromagnetic, respectively�. However, as
we have already showed in Ref. �20�, in our approach for any
choice of T, d�, and c, independently of the signs of the
couplings and on the fact that the corresponding order pa-
rameters are zero or not, for the free energy, and then for any
observable, there are always two—and only two—stable so-
lutions that we label as F and SG and that in the thermody-
namic limit only one of the two survives. Therefore, an AF-
like phase in our approach is not represented by another
solution; an AF-like phase, if any, occurs in the solution with
label F. In Ref. �20� we showed that, for n=1, for the solu-
tion with label F and SG there are two natural decoupled
order parameters that we have indicated as m�F� and m�SG�,
respectively. Similarly, now we have n coupled order param-
eters m�F;l� for the solution F and n other coupled order pa-
rameters m�SG;l� for the solution SG, l=1, . . . ,n. All the re-

sults we provide are exact up to O�1 /N� corrections.

1. J0
(l,k)=0 for lÅk

Let us consider the interesting case in which there are no
short-range interactions between different communities, i.e.,
let us assume that J0

�l,k�=0 for l�k. Let m0
�l���J0

�l� ;�h�l�� be
the stable magnetization of the pure model with Hamiltonian
�4�. Then, for both 
=F and SG, the n order parameters
m�
;l� satisfy independently the following system of n
coupled equations:

m�
;l� = m0
�l���J0

�
;l�;�H�
;l� + �h�l�� , �24�

where

�H�
;l� =
def



k

�J�
;l,k�m�
;k�, �25�

and the effective couplings J�F;l,k�, J�SG;l,k�, J0
�F;l�, and J0

�SG;l�

are given by

�J�F;l,k� =
def

c�l,k� � d��l,k��Ji,j
�l,k��tanh��Ji,j

�l,k�� , �26�

�J�SG;l,k� =
def

c�l,k� � d��l,k��Ji,j
�l,k��tanh2��Ji,j

�l,k�� , �27�

J0
�F;l� =

def

J0
�l�, �28�

and

�J0
�SG;l� =

def

tanh−1�tanh2��J0
�l��� . �29�

Note that, when ��l����k�, unlike the random couplings Ji,j
�l,k�,

the effective couplings J�F;l,k� and J�SG;l,k� are not symmetric.
However, as we shall see soon, the couplings entering the
free energy are the symmetric ones: ��l�J�
;l,k�. Note also that
�J0

�F;l���J0
�SG;l�.

For a correlation function Cr
�
;l� of degree r, involving a

set of r vertices belonging only to the same community L0
�l�

we have

Cr
�
;l� = C0r

�l���J0
�
;l�;�H�
;l� + �h�l�� , �30�

whereas for a correlation function Cr,s
�
;l,k� of degree r+s, in-

volving a set of r vertices belonging to L0
�l� and a set of s

vertices belonging to L0
�k�, with l�k, we have

Cr,s
�
;l,k� = C0

�l���J0
�
;l�;�H�
;l� + �h�l��

� C0
�k���J0

�
;k�;�H�
;k� + �h�k�� , �31�

where the C0r
�l���J0

�l� ;�h�l��’s are the corresponding correlation
functions of degree r of the pure model with Hamiltonian
�4�. For the specific relation between the above correlation
functions and the averages or quadratic averages of physical
observables, we remind the reader to Eqs. �24�–�28� of Ref.
�20�. In particular in the F phase we have

�	i� = m�F;l�, i � L0
�l�, �32�

from which, by using Eqs. �2� and �3�, it follows also that the
average magnetization m�F� is given by �57�
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m�F� = 

l

��l�m�F;l�. �33�

Similarly in the SG phase we have

�	i�2 = m�SG; l�2
, i � L0

�l�, �34�

m�SG�2
= 


l

��l�m�SG; l�2
. �35�

The free energy density f �
� coming from Eq. �12� in-
volves a generalized Landau free energy density L�
� from
which it differs only for trivial terms independent from the
m�
�’s. The complete expression for f �
� in terms of L�
� is
left to the reader and corresponds to the obvious generaliza-
tion of Eq. �21� of Ref. �20�. The term L�
� reads ��f �
�

=trivial term +L�
� / l�
�, with l�
�=1,2 for 
=F, SG, respec-
tively�

L�
��m�
;1�, . . . ,m�
;n�� = 

l

��l��g�
;l�, �36�

where

�g�
;l� =
def m�
;l�

2
�H�
;l� + �f0

�l���J0
�l�;�H�
;l� + �h�l�� ,

�37�

f0
�l���J0

�l� ,�h�l�� being the free energy density in the thermo-
dynamic limit of the pure model with Hamiltonian �4�. Equa-
tion �36� can be also expressed in a more symmetric way as

L�
��m�
;1�, . . . ,m�
;n�� = 

l,k

��l��J�
;l,k�m�
;l�m�
;k�

2

+ 

l

��l��f0
�l���J0

�l�;�H�
;l� + �h�l�� .

�38�

2. �(l ,k), with lÅk, such that J0
(l,k)Å0

Here we consider the most general case in which there are
at least two communities that interact also via short-range
couplings. Now the additivity of the free energy of the pure
model with respect to the communities is completely lost
and for any l we need to consider in general

m0
�l����J0

�l�,k��	 ; ��h�l��	�, the stable magnetization of the lth
community of the pure model with total Hamiltonian �5�
having, in general, n+n�n−1� /2 short-range couplings

��J0
�l�,k��	 and n external fields ��h�l��	 �we use the parenthe-

sis � · 	 as a short notation to indicate a vector or a matrix with
components l�=1, . . . ,n or l� ,k�=1, . . . ,n, respectively�,

where we have also introduced J0
�l,l� =

def

J0
�l�. Then, the order

parameters m�
;l�, for both 
=F and SG, satisfy the follow-
ing system of n coupled equations:

m�
;l� = m0
�l����J0

�
;l�,k��	;��H�
;l�� + �h�l��	� , �39�

where the effective fields H�
;l� and the effective couplings
are defined as in Eqs. �25�–�29� with the obvious generaliza-
tion for J0

�
;l,k��.

For a correlation function Cr
�
;l� of degree r, involving a

set of r vertices belonging to the same lth community we
have again the obvious generalization of Eq. �30�, while the
obvious generalization of Eq. �31� can hold only between
two groups of communities, say with index l and k, having
no short-range couplings: J0

�l,k�=0. Equations �32� and �33� of
course still hold, while the term L�
� now becomes

L�
��m�
;1�, . . . ,m�
;n�� = 

l,k

��l��J�
;l,k�m�
;l�m�
;k�

2

+ �f0���J0
�l�,k��	;��H�
;l�� + �h�l��	� ,

�40�

f0���J0
�l�,k��	 , ��h�l��	� being the free energy density in the

thermodynamic limit of the pure model with total Hamil-

tonian �5�. When J0
�l�,k��=0 for any l�k, Eqs. �39� and �40�

reduce to Eqs. �24� and �38�, respectively.
For given �, among all the possible solutions of the self-

consistent system �24� and �25� �or Eq. �39��, whose set we
indicate by M, in the thermodynamic limit, for both 
=F
and 
=SG, the true solution �m̄�
;1� , . . . , m̄�
;n��, or leading
solution, is the one that minimizes L�
�,

L�
��m̄�
;1�, . . . ,m̄�
;n��

= min
�m�
;1�,. . .,m�
;n���M

L�
��m�
;1�, . . . ,m�
;n�� . �41�

For the localization and the reciprocal stability between
the F and the SG phases see the discussion in Sec. IIID.

As an immediate consequence of the Eq. �39� we get that
the adimensional susceptibility of the random model, �̃�l,k�

=
def

�m�
;l� /���h�k��, written in matrix form is

�̃��� = �1 − �̃0
��� · �J����−1 · �̃0, �42�

where we have introduced the matrix of the effective long-
range couplings �J�
;l,k�, and �̃0

�l,k���J0
�l� ;�h�l��, the adimen-

sional susceptibility of the lth pure community with respect
to the external field h�k� of the kth community,

�̃0
�l,k� =

def �m0
�l����J0

�
;l�,k��	;��h�l��	�
��h�k� . �43�

Note that in the case J0
�l,k�=0 for l�k, �̃0

��� is a diagonal
matrix whereas �̃��� not.

Remark 1. Note that, as it will become clear by looking at
the proof in Sec. VII, unlike the case n=1, for n2 the
expression of L�
� in Eq. �36� or �40� has a physical meaning
only when calculated at any stable solution of the self-
consistent system �24� or �39�, respectively. In fact, for n
2, the free energy term L�
� is different from the original
density functional of the model L�
� that lives in an enlarged
space of the order parameters; the form of L�
� is equal to the
form of L�
� only when calculated in a solution of the self-
consistent system of Eq. �36� or �40�. In this sense, for n
2, the expression “Landau free energy density” for L�
�

would be somehow inappropriate; the true Landau free en-
ergy density is represented by L�
� and is given in Sec. VII,
but unfortunately its general expression turns out to be too
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complicated to be exploited for calculating rigorously the
stability of a given solution. We shall come back soon on this
point in the next section. We stress however that Eq. �36� or
�40� cover all the solutions, stable or not; in other words at
any saddle point �see Sec. VII� of the original density func-
tional L�
� we have L�
�=L�
�.

B. Stability and phase transition’s scenario

Note that, for � sufficiently small �see later� and �h�l�	
=0, Eq. �24� or �39� have always the solution �m�
;l�	=0 and,

furthermore, if �m+
�
;l�	 is a solution for �h�l�	=0, �m−

�
;l�	 =
def

− �m+
�
;l�	 is a solution as well. From now on, if not explicitly

said, we will refer only to one of the dual solutions. Equation
�24� or �39� define an n dimensional map. Under this map a
solution �m�
;l�	 of Eq. �24� or �39� is stable �but in general
not unique� if

��l� � 1, l = 1, . . . ,n , �44�

where ��l	 are the eigenvalues of the n�n matrix �̃0
��� ·�J�
�

calculated at zero field: m�
;l�=0, l=1, . . . ,n.
Remark 2. Given a solution of the self-consistent system

�24� or �39�, Eq. �44� represents the stability condition of the
solution under iteration as an n-dimensional map. As we
have mentioned in Remark 1, due to the fact that, for n2,
the original density functional of the model L�
� and the term
L�
� are different, we cannot calculate the true Hessian of
L�
� from the Hessian of L�
�. Unfortunately, the Hessian of
L�
� has a quite complicated form even when calculated at a
solution of the self-consistent system �24� or �39�. The posi-
tivity of this Hessian would be important to discriminate
rigorously the stability of any solution. In this sense, as done
for n=1 in Ref. �20�, when the transition is of second order,
important information about the critical behavior of the
system could be obtained by expanding L�
� around the so-
lution �m�
;l�	=0 by keeping a sufficiently large number of
terms involving the even derivatives of the matrix
A�
����J0

�l,k�	 ; ��H�
;l�+�h�l�	� with respect to the external
fields �h�l� and calculated at ��H�
;l�	= ��h�l�	=0. Such a
general study is beyond the aim of this paper. Note however
that, even if we are not able to discriminate rigorously be-
tween stable and unstable states, due to the fact that the
self-consistent system �24� or �39� give all the possible solu-
tions, for any given � we are able to predict exactly which is
the leading �and then also stable� solution by looking at the
solution that gives the absolute minimum of L�
�, even when
there are first-order phase transitions �58�.

By setting �h�l�	=0 and expanding Eq. �24� or �39� to the
first order, we get the equation for the critical temperature
1 /�c

�
� of a P-
 phase transition when it is of second order,

max
l=1,. . .,n

��l� = 1, �45�

which in particular implies, equivalently

det�A�
����c
�
�J0

�
;l,k�	;�0	�� = 0, �46�

where the n�n matrix A�
� is given by

A�
� =
def

1 − �̃0
��� · ��J�
��m�
;l�=0,l=1,. . .,n. �47�

Equation �45� or �46� generalize Eq. �44� of Ref. �20� to
which reduce for n=1. In Ref. �20� we have seen that: when
J00 �and then J0

�
�0�, independently of the added con-
nectivity c and independently of the sign of the shortcuts J’s
�and then independently of the sign of J�
��, the phase tran-
sition, both P-F or P-SG, is second order and the critical
indices are the classic ones; while, when J0�0, we still have
J0

�SG�0 and then the P-SG transition is still second order
but, due to the fact that now J0

�F��0, for a sufficiently large
c, there are multicritical points and, moreover, it may appear
P-F first-order phase transitions and in such a case the critical
temperature in general does not satisfy Eq. �46� and the criti-
cal behavior can belong to the so called ml theory of Landau
phase transitions, l being an even integer greater or equal to
6. However, when n2, the above “simpler” dual scenario
for J00 and J0�0 is in general no more valid. In fact, if
for n=1 in Eq. �44� we set �J�F��0, we see that the solution
m�F�=0 is always stable �recall that the susceptibility is al-
ways non-negative�, while, if—for n2—for some couple
�l ,k� with l�k, in Eq. �44� we set �J�F;l,k��0, we see that in
general the solution �m�F;l�	=0 is no more a stable solution,
even if J0

�l,l�0 and J0
�l,k�=0 for any l�k �try for example the

simplest case: n=2, J0
�l,k�=0 and J�
;1,1�=J�
;2,2�=0�. This ef-

fect is of course at the base of antiferromagnetism and gives
a clue on how much more complex will be now the scenario
of phase transitions, be P-F or P-SG like.

According to the symmetries of the effective couplings,
we distinguish three cases: the homogeneous case, the sym-
metric case, and the general case.

1. Homogeneous case and the absence of internal
antiferromagnetism

Let us consider the uniform case, i.e., the case in which
the n communities have: equal size, ��l�=1 /n, equal connec-
tivity, c�l,k�=c, and interact through: arbitrary short-range
couplings, �J0

�l,k�	, but through equally distributed long-range
couplings, d��l,k�=d� also for l=k. Therefore, these models
have only one effective long-range coupling, say �J�
�, and
only one order parameter, say m�
�, and reduce to the small-
world models of one community already studied in Ref. �20�
whose self-consistent equation, in its most general form to
include n arbitrary external fields, was given by �from Eqs.
�A7�–�A12� of Ref. �20��

m�
� =
1

n



l

m0
�l����J0

�
;l�,k��	,��J�
�m�
�n + �h�k��	� ,

�48�

m�
;l� = m0
�l����J0

�
;l�,k��	,��J�
�m�
�n + �h�k��	� , �49�

m�
� =
1

n



l

m�
;l�, �50�

where we have used definitions �26�–�29� and we have taken
into account that the total average connectivity ct seen by
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each community is ct=cn. Our general solution, Eq. �39�,
reproduces—of course—this result, but it is interesting to
observe that this effect can be seen as due a particular case of
the superposition principle that emerges in our self-
consistent equations for the general problem. Note that in
this special case, despite the existence of n communities, for
each phase F or SG, there is just one order parameter m�
�.
This fact implies serious limitations on the possible phases of
such a model. In fact, let us consider for simplicity the case
in which all the communities have the same internal short-
range coupling J0

�l,l�=J0 and suppose also that there is no
short-range coupling among different communities: J0

�l,k�=0
for l�k. From Eqs. �48�–�50� we see that for �h�l�	= �0	, and
independently of J0, if J�F��0, all the m�F;l� are parallel �re-
call that, for h�0, at equilibrium the sign of the thermal
average magnetization of the single lth community,
m0

�l���J0 ;�h�, is equal to the sign of h�. If instead J�F��0, at
any temperature the only stable solution of Eq. �48� is m�F�

=0, and since the communities do not interact �from the
point of view of our effective field theory�, from Eq. �48� it
also follows that �m�F;l�	= �0	. More in general, this result
holds essentially also when we allow for the presence of a
same short-range coupling among different communities,
say: J0

�l,k�=J0
�1,2�, for l�k. In fact in this case we have that for

�h�l�	= �0	, if J0
�1,2�0 and if J�F��0, all the m�F;l� tend to be

parallel and equal to the—single—order parameter m�F�;
whereas, if J�F��0, at any temperature the only stable solu-
tion of Eq. �48� is again m�F�=0 which, in turn, implies that,
due to Eq. �50�, we must have also �m�F;l�	= �0	. A similar
argument for J�F��0 cannot however be repeated if some of
the short-range couplings J0

�l,k� are negative. In such a case in
fact, below the critical temperature TAF;0—if any—of a pos-
sible antiferromagnetic phase transition of the pure model,
the pure magnetizations m0

�l����J0
�
;l,k�	 ;0� start to be nonzero

and to have alternated directions in some ordered way to
give rise to a pure antiferromagnetism so that, from Eqs. �48�
and �50�, one could have in principle m�F�=0 but �m�F;l�	
� �0	. On the other hand, at sufficiently low temperatures the
SG solution �whose effective short- and long-range cou-
plings are all non-negative� will become the leading solution.
In fact, as an argument based on frustration suggests, even
if we are not able to give here the general proof, we
expect that the pure antiferromagnetism of the pure model
�to which would correspond a zero order parameter m�F�� is
never able to win against the spin glass solution. In other
words, as soon as c�0 �and then J�F��0�, in the homoge-
neous case, for J0

�1,2�0 there is no way to have any kind of
antiferromagnetism and, more in general, even if J0

�1,2��0,
antiferromagnetism—if any—is expected to be very weak
and to be dumped by the spin glass phases �note however
that for c exactly zero a regular antiferromagnetism may set
in if J0

�1,2��0�. This result is quite natural and, for n=2, in
two dimensions, has been numerically confirmed in �40� with
the choice J�1,1�=J�2,2�=J�1,2�=J0

�1,1�=J0
�2,2�=J0

�1,2��0 �59�.
We point out that Eqs. �48�–�50� hold for any choice of the
parameters. In particular, they hold also for n=N which
amounts formally to a single community �the result reported
in the Appendix of Ref. �20� referred to this choice�.

In conclusion, the homogeneous case does not have anti-
ferromagnetism: to have antiferromagnetism in small-world

system, it is not enough to have more communities but it is
necessary that be present some differentiation among the dis-
tributions of the couplings or some asymmetry, either in the
size, in the in- and out-couplings, or in the external fields.
Without any differentiation or asymmetry the whole collec-
tion of the communities can stay only in the same ferromag-
netic or spin glass phase without any long-range heterogene-
ity. For example, a typical minimal condition to have some
antiferromagnetism consists in taking, for any l, J�l,l�=0 and,
for any couple �l ,k�, with l�k, all the J�l,k� distributed ac-
cording to a distribution d��1,2� having a negative average.
We will analyze this case, the symmetric case, in detail in the
next paragraph.

2. Symmetric case—mutual antiferromagnetism

The simplest nontrivial case to see antiferromagnetism
consists in choosing the parameters in such a way that we
have the same short-range coupling as well as the same ef-
fective long-range coupling inside any community, and an-
other same effective long-range coupling between any two
different communities. This requires that, for any l, c�l,l�

=c�1,1�, J0
�l�=J0, d��l,l�=d��1,1�, and, for any couple �l ,k� with

l�k, c�l,k�=c�1,2�, J0
�l,k�=0, and d��l,k�=d��1,2�, with d��1,2�

�d��1,1�. Hence, for 
=F or 
=SG, we are left with the
only three effective couplings: �J0

�
;l,l�=�J0
�
�, �J�
;l,l�

=�J�
;1,1� and, for l�k, �J�
;l,k�=�J�
;1,2���J�
;1,1�. Note
that the condition c�l,k�=c�1,2�, for l�k, requires the equalities
of the relative sizes ��l�=1 /n. In this case �the symmetric
case� the matrix A�
;l,k� simplifies in

A�
;l,k� = b�l,k − x�1 − �l,k� , �51�

where

b =
def

1 − �J�
;1,1��̃0��J0
�
�;0� �52�

and

x =
def

�J�
;1,2��̃0��J0
�
�;0� . �53�

Hence, in the symmetric case the determinant can be explic-
itly calculated as

det A�
� = �b + x�n−1�b − x�n − 1�� . �54�

From Eq. �54� we see that Eq. �46� for the critical tempera-
ture of a second-order phase transition has two solutions: x
=−b and x=b / �n−1�. Therefore, we have the two following
possible solutions:

��c
�
�J�
;1,2� − �c

�
�J�
;1,1�� � �̃0��c
�
�J0

�
�;0� = − 1, �55�

��n − 1��c
�
�J�
;1,2� + �c

�
�J�
;1,1�� � �̃0��c
�
�J0

�
�;0� = 1.

�56�

For 
=SG Eq. �56� gives always a solution, whereas for 

=F a possible solution will come either from Eq. �55� or
from Eq. �56� according to the signs of the effective cou-
plings J�F;1,1� and J�F;1,2�, which are averages with respect to
the given measures d��1,1� and d��1,2�, respectively. If we are
sufficiently far from the homogeneous case �J�1,1�=�J�1,2�,
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antiferromagnetism can take place at a temperature given by
Eq. �55�. We can distinguish in turn the symmetric case in
two subcases.

Only mutual interaction: �J�F;1,1�=0. If d��1,1� has zero
average and �J�F;1,2��0, the solution for �c

�F� comes only
from Eq. �55�. In this last case it is easy to see that antifer-
romagnetism sets in by observing that for the self-consistent
system �24� and �25� there are for instance always solutions
of the form

�m�F;1�, . . . ,m�F;n�� = �0, . . . ,0,m�F�,0, . . . ,0,− m�F�,0, . . . ,0� ,

�57�

and all its combinations, where m�F� is any solution of

m�F� = m0��J0
�F�;�J�F;1,2�m0��J0

�F�;�J�F;1,2�m�F��� . �58�

Note that, due to the parity of the function m0 with respect to
its second argument, in Eq. �58� we are free to substitute
J�F;1,2� with �J�F;1,2��. Solutions as Eqs. �57� and �58� are evi-
dently antiferromagnetic and for sufficiently high tempera-
tures are leading against the SG solution. In Fig. 1 we plot a
case with J�1,1�=0 and J�1,2�=1.5. Observe that in this case
the solution m�F��0 is never stable under iteration. Finally
note that, for J0�0 and 
=F, the two terms appearing in the
left-hand side of Eqs. �55� and �56� are no more monotonic
functions of �, so that, for a sufficiently large value of c�1,2�,
�c

�F� will have multiple solutions. Furthermore, by observing
that all the critical behavior of the system is encoded in the
single susceptibility �̃0��J0

�
� ;0�, we see that we can use the

same analysis performed in Ref. �20�: when J0�0 the non-
monotonicity reflects also on the fact that the P-F transition
may be of first order.

Mutual and internal interaction: �J�1,2� ,�J�1,1��0. Much
more interesting is the case in which there are also internal
long-range couplings. Let us consider for example the case
with two communities. Self-consistent system �24� reduces
to

m�
;1� = m0
�1���J0

�1�;�J�
;1,1�m�
;1� + �J�
;1,2�m�
;2�� ,

m�
;2� = m0
�2���J0

�2�;�J�
;1,2�m�
;1� + �J�
;1,1�m�
;2�� ,

�59�

where we have used the fact that in the symmetric case
�J�
;2,2�=�J�
;1,1� and �J�
;2,1�=�J�
;1,2�. In the previous
case with �J�1,1�=0 essentially we had just one order param-
eter given by Eq. �58�; in the present case instead such a
reduction is not possible. Here there are two order param-
eters which are intrinsically not zero due to the presence of
the internal coupling �J�1,1� and at the same time the two
order parameters interact through the coupling �J�1,2� whose
sign determines whether they are parallel or antiparallel. For
n=2 from Eqs. �55� and �56� we see that, if �J�1,1��0, we
have two critical temperatures if �J�1,1� is sufficiently bigger
than ��J�1,2�� �and similarly if �J�1,1��0�, so that more inter-
esting phenomena are expected in this case. The general
mechanism will result clearer in the next paragraph.

3. General case

Of course making an analysis of the general case is a
formidable task; however we can get important insights by
looking first at the simplest CW model. In the CW model we
have two great simplifications: since there is no short-range
coupling we have �̃0�1; furthermore, since in the CW
model the connectivities become infinite in the thermody-
namic limit, the effective couplings �J�
;l,k� become linear in
� �see later for details�. As a consequence, for the CW model
in the symmetric case Eqs. �55� and �56� are linear in � and
may have at most one solution each. However, as soon as we
are not in the symmetric case, general Eq. �46� determining a
critical temperature of a second-order phase transition is no
longer linear and can have many solutions, i.e., when we are
not in the symmetric the degeneracy featuring Eq. �46� dis-
appears and we may have a number of multicritical points
O�n� where one or more order parameters are nonanalytic.
As in the case of a single community, n=1, the existence of
multicritical points gives us a clue about the fact that the
self-consistent equations admit more stable solutions. In Fig.
2 we plot a case with n=2. Note however that in the case
n=1 the necessary condition for the existence of multicritical
points was to have a short-range coupling negative, while
now we do not require this condition, the mechanism is in-
deed completely different and based on the fact that there is
some differentiation among the couplings. In �23� it was
shown that, for sufficiently large J’s, the CW model �see later
Sec. V� with n=2 exhibits a first-order phase transition tuned
by the relative sizes of the two communities. In our approach
this fact is clear since the effective couplings J�
;l,k�, given by
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FIG. 1. �Color online� Solution of self-consistent system �24�
for the CW model in the symmetric case n=2 with J�1,1�=0 and
J�1,2�=2.5 or −J�1,2�=2.5. There is only one critical temperature lo-
cated at Tc=2.5. Note that here we plot all the possible solutions.
For J�1,2��0, m�F;1� and m�F;2� �continuous lines� are parallel and
coincide, whereas for J�1,2��0 they are antiparallel. The plot of
det�A� �dashed line� represents the stability curve—under
iteration—of the solution �m�F;1� ,m�F;2��, Eq. �44�, and similarly the
plot of det�A0� represents the stability curve for the trivial solution
m�F;1�=m�F;2�=0; in the case of only mutual interactions the two
coincide: det�A�=det�A0�. Clearly, in this example, for T�Tc, no
solution results stable under iteration. We plot also the free energy
term L �dotted line� applied, via Eq. �38�, to the nontrivial solution
�m�F;1� ,m�F;2��. The free energy term L obtained applied instead to
the trivial solution m�F;1�=m�F;2�=0 is a constant �for more details
about the CW model see Sec. VII�, L=L0=−log�2� and is plotted
only in the region where the trivial solution is the unique �and—of
course—stable� solution.
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Eqs. �25� and �26�, depend on the connectivities c�l,k� which
in turn depend on the relative sizes ��l� through Eq. �7�; as
soon as the relative sizes are not equal the connectivities c�l,k�

and then the effective couplings J�
;l,k� are no more symmet-
ric so that more stable solutions may exist, and, by varying
the parameters and keeping fixed the temperature, we pass
from one solution, say �m�
;l�	, to the other, say �m��
;l�	,
performing finite jumps, i.e., first-order phase transitions in
the space of the free parameters, with probability 1.

If we consider now a bit more complicated model as the
VB model, we still have �̃0�1 since there is no short-range
coupling, but now the connectivities are finite so that the
effective couplings are no more linear in �. However, in
general, for n not small, hardly the symmetric case with only
positive couplings will give multicritical points through Eqs.
�55� and �56� �this can be understood considering large but
finite connectivities�; to have multicritical points, and, in the
space of the parameters, possible first-order phase transi-
tions, it will be necessary to be far from the symmetric case
with some differentiation among the effective couplings. Fi-
nally, we expect that also in the case of positive short-range
couplings, this scenario basically holds as well. However,
when some of the short-range couplings are negative, the
scenario of course changes completely and, as we already
know from the case n=1, we may have multicritical points
and first-order phase transitions also with respect to the tem-
perature and even in the symmetric case, i.e., without the
necessity to have some differentiation among the effective
couplings.

Recall that, in general, only one solution of the self-
consistent equations is leading in the thermodynamic limit

and, furthermore, a phase transition itself may be not leading
in this limit; however the stable not leading solutions may
play an important role when n is high �see next paragraph�.

4. Behavior for large n

As it was already evident from the previous paragraphs, if
there is some differentiation among the communities, as n
increases the number of solutions of the self-consistent sys-
tem grows. In Fig. 3 we report a cas with n=3. Now, only
one of these solutions is leading; nevertheless, the other
stable not leading solutions as metastable states play a more
and more important role in the limit of large n, especially
when some of the communities interact through negative
couplings. In Fig. 4 we report a case with n=3 and negative
inter-couplings. Indeed, coming back to the symmetric case,
from Eqs. �55� and �56� we see that when the number of
communities is large, n�1, and the communities are con-
nected, the highest critical temperature comes only from Eq.
�56� and is the solution of the following equation:

�c
�
�J�
;1,2��̃0��c

�
�J0
�
�;0� �

1

n
. �60�

Recalling the definition of J�
;1,2� we see that the transition
described by Eq. �60� will be either P-F or P-SG. In particu-
lar, if J�F;1,2��0 the leading transition will be only P-SG.

In more realistic situations, the system will be far from
the symmetric case. Typically, different couples of commu-
nities will be coupled by different couplings of arbitrary am-
plitudes and signs, implying therefore frustration. As a con-
sequence, in such a disordered structure the expected leading
transitions will be P-SG. On the other hand such a claim
results immediately clear to the reader familiar with spin-
glass theory. In fact, if we look at our self-consistent equa-
tions �24� and �25� �or Eq. �39��, for example considering the
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FIG. 2. �Color online� Solution of self-consistent system �24�
for the CW model in the symmetric case n=2 with J�1,1�=2 and
J�1,2�=2.5, or J�1,2�=−2.5. Note that here we plot all the possible
solutions. For J�1,2��0, m�F;1� and m�F;2� �stars� are parallel,
whereas for J�1,2��0 they are antiparallel. The several branches of
det�A� �circles� represent the stability—under iteration—of the sev-
eral nontrivial solutions �m�F;1� ,m�F;2��, Eq. �44�, and similarly the
plot of det�A0� �dashed line� represents the stability for the trivial
solution m�F;1�=m�F;2�=0. We plot also the several branch’s of the
free energy term L �squares� applied, via Eq. �38�, to the several
solutions. Here Eqs. �55� and �56� give two instability points at the
temperatures Tc1=2.5 and Tc2=1.5. In the thermodynamic limit,
only Tc1 corresponds to a true critical temperature, whereas the
other corresponds to a metastable solution. Furthermore we see an-
other metastable solution at Tc3=1.18 featured as two broken sym-
metries where �m�F;1� ,m�F;2�� do not transit around 0, but around the
values �0.67.

FIG. 3. �Color online� Solution of self-consistent system �24�
for the CW model in the symmetric case n=3 with J�1,1�=3 and
J�1,2�=0.5. Note that here we plot all the possible solutions. We plot
also the several branches of the free energy term L applied, via Eq.
�38�, to the several solutions. Here Eqs. �55� and �56� give two
instability points at the temperatures Tc1=4 and Tc2=2.5. In the
thermodynamic limit, only Tc1 corresponds to a true critical tem-
perature, whereas the other corresponds to a metastable solution.
Furthermore we see another metastable solution at Tc3=1.32 fea-
tured as two broken symmetries where �m�F;1� ,m�F;2� ,m�F;3�� do not
transit around 0, but around the values �0.75.
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simplest CW case, apart from the fact that in these equations
there is not the Onsager’s reaction term �21�, they are for-
mally identical to the TAP equations �22� �recall that �H�
;l�

is the field seen by lth community due to the self-
magnetization m�
;l� and to the others n−1 magnetizations�.
Yet, due to our general mapping which establishes a strong
universality of all the Poisson small-world models, the gen-
eral structure of these equations roughly speaking is still of
the TAP kind—but without the Onsager’s term—even when
there are short-range couplings. Therefore, the typical multi-
valley landscape scenario representing the existence of infi-
nitely many metastable states �whose number grows expo-
nentially with n�, possibly also separated by infinitely high
free energy barriers, is expected in the limit of large n with
negative long-range couplings �25,26�. We recall that at low
temperatures, where the glassy scenario has been exactly
confirmed in the SK case, the Onsager’s term disappears
�25�.

5. Attaching good to bad communities

When in a given community the J’s are almost absent and
the J0’s are negative, or either when the J’s are negative �at
least in average�, as we have already learned, there is no way
for such a bad community to have any long-range order, and
the only possible state, at low temperature, inside this bad
community, kept isolated, is the glassy state �provided that
its own connectivity be sufficiently high�. An interesting is-
sue is then to understand what happens if we connect the bad
community with a good community �i.e., having positive in-
teractions and then some long-range order� through a certain
number �proportional to some added connectivity c�1,2�� of
random couplings J�1,2�. Perhaps the surprising answer is that
not only the bad community gains an order, but also the
already good community improves its order. We point out
that this result is not immediately so obvious a priori; the fact

that the number of interactions per spin has been increased
by c�1,2� cannot be used to explain this effect that takes
place for both positive or negative random couplings J�1,2�.
However, a simple argument based on the high temperature
expansion shows actually that this is the case: increasing the
average connectivity always improve the order. In Fig. 5 we
report an example for the VB model and compare the two
situations with and without attaching the two communities.

C. Level of accuracy of the method

As anticipated in the introduction, the level of accuracy of
this effective field theory is the same as that discussed in Ref.
�20�. More precisely, Eqs. �24�–�40� are exact in the P re-
gion, i.e., the region where any of the 2n order parameters is
zero; whereas in the other regions provide an effective ap-
proximation whose level of accuracy depends on the details
of the model. In particular, in the absence of frustration the
method becomes exact at any temperature in two important
limits: in the limit c�l,k�→0+, l ,k=1, . . . ,n, in the case of
second-order phase transitions, due to a simple continuity
argument; and in the limit c�l,k�→�, l ,k=1, . . . ,n, due to the
fact that in this case the system becomes a suitable fully
connected model exactly described by self-consistent equa-
tions �24� �of course, when c�l,k�→�, to have a finite critical
temperature one has to renormalize the average of the short-
cuts couplings by c�l,k��.

IV. EXAMPLES

In this section we consider some applications for which
the method can be fully applied analytically: the generalized
VB model and the generalized one-dimensional small-world
model. By using our effective field theory, both these models
have been already studied in Ref. �20� in their n=1 version.
Within the VB models, we will consider in particular the
limit in which all connectivities go to infinity, obtaining then
the generalized CW and the generalized SK models. The CW
case model can be extrapolated also from the SK model as a
particular �actually the simplest� case.

FIG. 4. �Color online� Solution of self-consistent system �24�
for the CW model in the symmetric case n=3 with J�1,1�=3 and
J�1,2�=−0.5. Note that here we plot all the possible solutions. We
plot also the several branches of the free energy term L applied, via
Eq. �38�, to the several solutions. Here Eqs. �55� and �56� give two
instability points at the temperatures Tc1=3.5 and Tc2=2. In the
thermodynamic limit, only Tc1 corresponds to a true critical tem-
perature, whereas the other corresponds to a metastable solution.
We see further metastable solutions at Tc3=1.6. with multiple bro-
ken symmetries where �m�F;1� ,m�F;2� ,m�F;3�� do not transit around 0,
but around the values �0.75 and �0.80.

FIG. 5. �Color online� Solutions of self-consistent system �24�
for the VB model n=2 with couplings J�1,1�=1, J�2,2�=−1 and
J�1,2�=−1 or J�1,2�=1, and connectivities c�1,1�=2, c�2,2�=2, and
c�1,2�=0 �empty squares for m�F;1� and continuous line for m�F;2�� or
c�1,2�=1 �stars for m�F;1� and circles for m�F;2��. We plot also the free
energy terms L �rhombus and filled squares for the two cases�.
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A. Generalized Viana Bray models and the generalized Curie-
Weiss and Sherrington-Kirkpatrick limits

Among all the possible cases of the models introduced in
Sec. II, the simplest family of models is the one with no
short-range couplings: J0

�l,k�=0, for any l ,k, which, can be
seen as a generalization of the Viana-Bray model to n�1
communities. When there is no short-range coupling the pure
magnetizations and the corresponding free energy densities
of each community read as

m0
�l��0;�h�l�� = tanh��h�l�� , �61�

�f0
�l��0;�h�l�� = − log�2 cosh��h�l��� , �62�

so that the system �Eqs. �24� and �25�� becomes

m�
;l� = tanh�H�
;l� + �h�l�� , �63�

H�
;l� = 

k

�J�
;l,k�m�
;k�, �64�

and for the Landau free energy density one has

L�
��m�
;1�, . . . ,m�
;n��

= 

l

��l���J�
;l,l��m�
;l��2

2
− log�2 cosh��H�
;l����

+ 

l�k

��l��J�
;l,k�m�
;l�m�
;k�

2
, �65�

where the effective couplings �J�
;l,k� are given by Eqs. �26�
and �27�. In particular, more explicitly, for measure �21� we
have

m�
;l� = tanh�

k

tanhl
��J�l,k��c�l,k�m�
;k� + �h�l�� , �66�

where l
=1 or 2 for 
=F or SG, respectively; whereas for
measure �22� one has

m�F;l� = tanh��h�l�� �67�

and

m�SG;l� = tanh�

k

tanh2��J�l,k��c�l,k�m�SG;k� + �h�l�� ,

�68�

so that in the case of measure �22� only P-SG-like phase
transitions are possible. In the case of measure �21� from Eq.
�66� we see that if all the couplings J�l,k� are non-negative,
there are both P-F- and P-SG-like phase transitions, but only
the former are leading, due to their higher critical tempera-
ture. However, if some of the couplings J�l,k� is negative, in
general there can be P-F-like phase transitions with compe-
titions between ferromagnetism and antiferromagnetism and,
furthermore, for some range of the parameters there can be
also a competition with a P-SG-like phase transition that in
turn gives rise to n stable spin-glass-like order parameters
m�SG;l�.

The inverse critical temperature �c
�
� of any possible

second-order phase transition can be obtained by developing

self-consistent system �63� and �64� for small m�
;l� and h�l�

=0. As we have seen in Sec. III B, this amounts to find the
solutions of the equation det�A�
;l,k��=0 which in the present
case becomes

A�
;l,k� = �l,k − �c
�
�J�
;l,k�, �69�

where we have used �̃0
�l,l��0;�h�l��=1−tanh2��h�l��. The non-

linear equation det A�
�=0 provides the exact critical tem-
perature of any second-order phase transition of this gener-
alized Viana-Bray model. For example, for n=2 this
equation becomes

�1 − �J�
;1,1���1 − �J�
;2,2�� − �J�
;1,2��J�
;2,1� = 0, �70�

which, for measure �21�, amounts to

1 − �c�1,1� tanhl
��J�1,1�� + c�2,2� tanhl
��J�2,2���

+ c�1,1�c�2,2� tanhl
��J�1,1��tanhl
��J�2,2��

−
�

1 − �
�c�1,2�tanhl
��J�1,2���2 = 0, �71�

where we have used � =
def

��1�, ��2�=1−� and Eq. �7�. As we
have seen in Sec. III B, the symmetric case can be explicitly
worked out also for n generic. From Eq. �55� and �56� we
have

�c
�
�J�
;1,2� − �c

�
�J�
;1,1� = − 1, �72�

and

�n − 1��c
�
�J�
;1,2� + �c

�
�J�
;1,1� = 1. �73�

1. CW and the SK limits

Let us now consider the Curie-Weiss limit with 
=F.
Given the set of the relative sizes ���l�	, we can recover the
Curie-Weiss limit by choosing the connectivities c�l,k� to be
equal to their maximum value which, according to Eq. �9�, is
given by

c�l,k� = ��k�N . �74�

With this choice the probabilities p�l,k� become

p�cij
�l,k�� = �cij

�l,k�,1, �75�

so that, by choosing measure �21� with the J�l,k� renormalized
by N

d��l,k�

dJi,j
�l,k� = �Ji,j

�l,k� −
J�l,k�

N
� , �76�

the CW limit is recovered �of course anything can be re-
phrased in terms of limits by simply substituting the lhs of
Eqs. �74�–�76� the equalities with arrows-limits for N→��.
By using Eqs. �74�–�76� for large N, system �63� and �64�
and Landau free energy �65�, for 
=F, become

m�F;l� = tanh�H�F;l� + �h�l�� , �77�

H�F;l� = 

k

�J�l,k���k�m�F;k�, �78�
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L�F��m�
;1�, . . . ,m�
;n��

= 

l

��l����l��J�l,l��m�
;l��2

2
− log�2 cosh��H�F;l����

+ 

l�k

��l�m�
;l��J�l,k���k�m�
;k�

2
, �79�

which generalizes the result found in �23� for n=2 to general
n. Notice that, as we explain in Sec. III C, Eqs. �77�–�79� are
exact at any temperature.

Analogously, if we assume again Eq. �74� and choose
measure �23�, the SK limit is recovered, and for large N
system �63� and �64� and Landau free energy �65�, become

m�
;l� = tanh�H�
;l� + �h�l�� , �80�

H�
;l� = 

k

�J�
;l,k�m�
;k�, �81�

L�
��m�1�, . . . ,m�n��

= 

l

��l���J�
;l,l��m�l��2

2
− log�2 cosh��H�
;l����

+ 

l�k

��l�m�l��J�
;l,k�m�k�

2
, �82�

where for large N the effective couplings are given by �ac-

cording to measure �23� J�l,k� and J̃�l,k� are, respectively, the
average and the variance of the couplings�

�J�F;l,k� = ��k��J�l,k�, �83�

and

�J�SG;l,k� = ��k���J̃�l,k��2. �84�

Equations �80�–�84� generalize the result found in �38,39�,
valid for only a uniform mutual coupling, to general mutual
couplings as well as internal couplings. Notice that, as ex-
plained in Sec. III C, in unfrustrated systems, i.e., for J�l,k�

� J̃�l,k�, Eqs. �80�–�84� are exact at any temperature.

B. One-dimensional small-world model for n communities

In Ref. �20� we have studied in detail the one-dimensional
small-world model for n=1 emphasizing the existence of
first-order phase transitions for negative short-range cou-
plings. Here we generalize this result to n communities.

For the free energy, the magnetization and the susceptibil-
ity of the pure model of the lth community we have

− �f0
�l���J0

�l�,�h�l�� = log�e�J0
�l�

cosh��h�l��

+ �e2�J0
�l�

sinh2��h�l�� + e−2�J0
�l�

�1/2	 ,

�85�

m0
�l���J0

�l�,�h�l�� =
e�J0

�l�
sinh��h�l��

�e2�J0
�l�

sinh2��h�l�� + e−2�J0
�l�

�1/2
, �86�

�̃0
�l���J0

�l�,�h�l�� =
e−�J0

�l�
cosh��h�l��

�e2�J0
�l�

sinh2��h�l�� + e−2�J0
�l�

�3/2
. �87�

Therefore, self-consistent system �24� and �25� for the n
communities becomes

m�
;l� =
e�J0

�
;l�
sinh��H�
;l� + �h�l��

�e2�J0
�
;l�

sinh2��H�
;l� + �h�l�� + e−2�J0
�
;l�

�1/2
, �88�

H�
;l� = 

k

�J�
;l,k�m�
;k�. �89�

For the symmetric case, from Eqs. �55� and �56� we obtain
that the n communities undergo a second-order transition at a
critical temperature given either by

��c
�
�J�
;1,2� − �c

�
�J�
;1,1��e2�c
�
�J0

�
�
= − 1, �90�

or by

��n − 1��c
�
�J�
;1,2� + �c

�
�J�
;1,1��e2�c
�
�J0

�
�
= 1, �91�

where we have used, from Eq. �87�, �̃0��J0 ;0�=exp�2�J0�.

V. APPLICATION TO PERCOLATION

A. Effective percolation theory

The key point of our approach is a mapping that maps the
original random model onto a nonrandom one. In turn this
mapping is based on the so-called high-temperature expan-
sion of the free energy which, in a suitable region of the
phase diagram that we call P, converges. The boundary of the
P region is established by critical condition �46�. Within a
physical picture, in Sec. III B we were mainly concerned
with the critical temperature. However, it should be clear that
the criticality condition can be expressed in terms of any of
the parameters entering Eq. �46�. In particular, for 
=F and
non-negative couplings �J�F;l,k�0 and J0

�l,k�0, it is of re-
markable interest to study the criticality condition in the limit
of zero temperature as well as the behavior of the magneti-
zations m�F;l� near this boundary. Recalling the definition of
the set of bonds �0

�l� and �0
�l,k� �we find it convenient to define

also �0
�l,l� =

def

�0
�l� and �0 =

def

�l�,k��0
�l�,k���, and exploiting

�J�F;l,k�→c�l,k�, for �→�, it is easy to see that in the limit
�→� criticality condition �46� amounts to

det�1 − E0 · c� = 0, �c�l,k�  0	 , �92�

where c is the matrix of the added connectivities c�l,k�, and
the n�n matrix E0=E0��0� is given by

E0
�l,l� = lim

�→+�
�̃0

�l,l���J0
�l�;0� , �93�

if J0
�l,k�=0 for any l�k, whereas in the general case

E0
�l,k� = lim

�→+�
�̃0

�l,k����J0
�l�,k��	;0� . �94�

In the above equations it is understood that we are con-
sidering only graphs �0 such that the pure model has no
finite critical temperature, i.e., it is only �c0=�. In fact, if

COMMUNICATION AND CORRELATION AMONG COMMUNITIES PHYSICAL REVIEW E 80, 011142 �2009�

011142-13



this is not the case, as occurs for instance if �0 is the d0
dimensional lattice with d02, the P region is shrunk to the
single trivial point c�l,k��0 and we can take effectively
E0

�l,k�=+� �this issue will become clearer soon, see also Ap-
pendix B�. More precisely, if �c0�� or even if �c0=0, as
occurs in scale free networks with a power law exponent �
�3 �41�, one should use Eqs. �93� and �94� keeping N finite.

A solution �cc
�l,k�	 of Eq. �92� represents the exact critical

values �or percolation threshold� of the set of the connectivi-
ties over which a giant connected component exists. Note
that Eq. �92� in general is a nonlinear equation in the n2

unknown connectivities �c�l ,k�	. Therefore, in general, for
n2, there are infinite solutions as �n2

. This degeneracy of
Eq. �92� reflects the fact that given n communities, we can
realize a connected cluster by placing the bonds in many
ways, as, e.g., either over a single community, or between
two or more communities. However, this high degeneracy
can be partially removed, and Eq. �92� simplified, when there
are special symmetries among the connectivities. In particu-
lar, the symmetric case �J0

�l,k�=0 for l�k, c�l,l�=c�1,1� for any
l and c�l,k�=c�1,2� for any l�k� constitutes a simplified situa-
tion in which the determinant in Eq. �92� can be explicitly
calculated as in Eq. �54�. In the symmetric case, with the
further simplification J0

�l,l�=J0
�1,1�=J0, Eq. �92� gives the fol-

lowing solution split into two branches:

�cc
�1,2� − cc

�1,1�� lim
�→+�

�̃0��J0;0� = − 1, �95�

and

��n − 1�cc
�1,2� + cc

�1,1�� lim
�→+�

�̃0��J0;0� = 1. �96�

Notice that the solution with cc
�1,2�=cc

�1,1�=0 may occur only
for a divergent susceptibility. In particular, when there are no
short-range connections, i.e., J0=0, we have �̃0��J0=0;0�
=1 so that Eqs. �95� and �96� give the surfaces

cc
�1,2� = cc

�1,1� − 1, cc
�1,1�  1 �97�

and, for n2

cc
�1,2� =

1 − cc
�1,1�

n − 1
, cc

�1,1� � 1, �98�

where we have taken into account that the connectivities are
defined non-negative.

Similarly, one can study the relative size �s�l�	 of the giant
connected component by studying, for 
=F and for non-
negative short-range couplings, self-consistent system �24�
and �25� in the limit �→+�, where, again, we exploit
�J�F;l,k�→c�l,k�, for �→�. In the case of J0

�l,k�=0 for l�k, we
get

s�l� = s0
�l�


k

c�l,k�s�k�� , �99�

where

s0
�l�


k

c�l,k�s�k�� =
def

m0
�l� lim

�→�
�J0

�l�;

k

c�l,k�s�k�� . �100�

Whereas in the general case, from Eq. �39� we get

s�l� = s0
�l��


k

c�l�,k�s�k��� , �101�

where now

s0
�l��


k

c�l�,k�s�k��� =
def

m0
�l�� lim

�→�
�J0

�l�,k��	;�

k

c�l�,k�s�k��� .

�102�

Note that in the above equations c�l,k�s�k� represents a fraction
of the connectivity c�l,k�, being 0�s�k��1. Note also that, by
virtue of some nonzero short-range couplings J0

�l,k� with l
�k, and J0

�l,h� with l�h and h�k, the relative sizes of the
giant connected component of the two communities l and h,
s0

�l� and s0
�h� �the pure model�, influence each other also if

there is no shortcut among the two communities, J0
�l,h�=0.

When we are far from the symmetric case, self-consistent
system �99� or �101� in general may admit many stable so-
lutions, i.e., solutions �s�l�	 such that the left-hand side of
Eq. �92� is positive. The relative probabilities among these
solutions can be calculated as exp�−L� from the expression
�36� or �40� for the Landau free energy density in the limit
�→+�. In the case of J0

�l,k�=0 for l�k, up to a constant
term, we get

L�s�1�, . . . ,s�n�� = 

l

��l�L0
�l�


k

c�l,k�s�k�� + 

l,k

��l�c�l,k�s�l�s�k�

2
,

�103�

where

L0
�l�


k

c�l,k�s�k�� =
def

lim
�→+���f0

�l��J0
�l�;


k

c�l,k�s�k��
− lim

N→�

1

N��l� 

�i,j���0

�l�
log�cosh��J0;�i,j�

�l� ��� .

�104�

Notice that in defining L0
�l� in Eq. �104� we have subtracted

the trivial and divergent terms log�cosh��J0;�i,j�
�l� �� which, be-

ing constants, do not modify the relative probabilities. Simi-
larly, in the general case we have

L�s�1�, . . . ,s�n�� = 

l,k

��l�c�l,k�s�l�s�k�

2
+ L0�


k

c�l�,k�s�k��� ,

�105�

where

L0�

k

c�l,k�s�k��� =
def

lim
�→+���f0��J0

�l��	;�

k

c�l�,k�s�k���
− lim

N→�

1

N 

�i,j���l,k�0

�l,k�
log�cosh��J0;�i,j�

�l,k� ��� ,

�106�

Of course, among all the stable solutions of self-
consistent system �99� or �101� the leading solution will be
given by looking at the absolute minimum of L. It is inter-
esting to observe that the term −L0, as a function of a generic
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c, is nothing else than the logarithm of a degenerate partition
function. We report its expression in Appendix A.

Self-consistent system �99� or �101� are exact in the P
region, that is for all values of the vector �c�l,k�	 below the
leading �i.e., minimal� critical surface �cc

�l,k�	; however, again,
the limits �c�l,k�→0+	 and �c�l,k�→�	 will be exact indepen-
dently of the critical surface �cc

�l,k�	. Under these limitations,
our result for percolation constitutes a generalization to ge-
neric n of the approach developed in �42,43� which was built
for n=1.

We end this paragraph by giving the meaning of the above
expressions directly in terms of graph theory. Concerning s0

�l�

and s�l� they clearly represent the fraction of the sites belong-
ing to the giant connected component �if any� in the lth com-
munity. More precisely, in the most general case we have

s0
�l���0	� = lim

N→�


i�L0
�l� ni

�l�

N��l� , �107�

where ni
�l�=0,1 if respectively the vertex i�L0

�l� belongs or
not to a connected cluster with the property to be giant �if
any� and having bonds belonging to the given initial set of

bonds �l�,k��0
�l�,k��. Similarly, s0

�l� ��c�l�,k��	� and s�l� have
analogous expressions as Eq. �107� and represent the fraction
of sites of the lth community belonging to a connected com-
ponent with the property to be giant �if any� and having
bonds belonging to the union of the initial set of bonds

�l�,k��0
�l�,k�� and the other bonds randomly spread according

to the set of the given added connectivities �c�l�,k��	. Note
that, by definition, the only difference between s0

�l� ��c�l�,k��	�
and s�l� is that in the latter case we have to average over the
different realizations of the graph with distribution �20�,
while for the former, as for the case of thermodynamics, only
the average values of the connectivities are taken into ac-
count. Concerning instead the meaning of the matrix E0

�l,k� we
have �see Appendix B for details�

E0
�l,l� = lim

N→�



i�L0
�l�

Ni
�l�

N��l� , �108�

where Ni
�l� is defined as the number of vertices belonging to

the lth community �including i itself� which are reachable
from the site i�L0

�l� by at least one path of connected verti-
ces. We recover hence immediately that, e.g., for the case of
no short-range coupling J0�0, we have Ni

�l��1 and then
lim�→��̃0

�l,l� ��J0
�l� ;0�=1. Similarly for the case in which

�L0
�l� ,�0

�l�� is the one-dimensional chain we have Ni�N and
then lim�→��̃0

�l,l� ��J0
�l� ;0�=+�. Finally, for l�k, by defining

Ni
�l,k�, with i belonging to the lth community, as the number

of vertices belonging to the kth community reachable by at
least one chain of bonds from the vertex i, we have the
following expression analogous to Eq. �108�:

E0
�l,k� = lim

N→�



i�L0
�l�

Ni
�l,k�

N��l� . �109�

Note that now it can be also Ni
�l,k�=0, while, by definition

Ni
�l,l�1. Furthermore it holds the following balance:

��l�E0
�l,k� = ��k�E0

�k,l�. �110�

By using the obvious generalization of Eqs. �108� and
�109�, we can define a quantity similar to E0

�l,k�, E�l,k�, to in-
clude the presence of added bonds randomly spread accord-
ing to measure �18� with average connectivities �c�l,k�	, and
from Eq. �42� in the zero temperature limit we get �in matrix
form�

E = �1 − E0 · c�−1 · E0. �111�

Equation �111� tells us how E changes as we vary the �c�l,k�	,
being an exact equation as the �c�l,k�	 belong to the P region.

B. Percolation threshold vs fractal dimension

Let us come back, for the moment being, to the case n
=1 and let us consider the simplest model: the VB model
�see Sec. IV�. In this case Eq. �92� gives immediately the
critical value cc=1, which is the very long known value of
the percolation threshold for the Poissonian graph �44�. On
the other hand, if we have a d0-dimensional underlying pure
graph �L0 ,�0� and d01, whatever �L0 ,�0� may be compli-
cated, we always have E0=O�N� or, equivalently, in the limit
�→+� for the susceptibility of the pure system we have
�̃0→+�, so that for the critical value we get always the
obvious result cc=0. To have a critical value cc strictly in the
range �0,1� it is necessary that the underlying graph �L0 ,�0�
has a dimension lower than 1: d0�1. For example one can
consider the case in which the graph �L0 ,�0� is made up of
finite units as dimers, triangles, etc. For instance, in Ref. �20�
we have studied the case of dimers for which we have
�̃0��J0 ;0�= �exp��J0�� /cosh��J0�. Therefore in the limit �
→+� we get �̃0→2 or, equivalently, E0=2, which inserted
in Eq. �92� gives the result cc=1 /2. This result is still trivial
because in this example we have d0=0. However, there is no
limitation in the choice of the graph �L0 ,�0�; all the theory
holds for any arbitrary graph �L0 ,�0� which in particular can
be some quenched graph obtained by removing randomly a
sufficient number of bonds from another initial regular graph
so that the final graph �L0 ,�0� will have a non trivial value
of E0 corresponding to a fractal dimension d0� �0,1� �45�.
Similarly, as already stressed in Sec. II for generic n, for any
l and any k, the symbol J0

�l,k� is actually a short notation to
indicate all the short-range couplings connecting the lth and
the kth communities: J0

�l,k�= �J0;�i,j�
�l,k� 	, i�L0

�l�, i�L0
�k�; so that

the graphs ��L0
�l,k� ,�0

�l,k��	 are completely arbitrary with a
nontrivial percolation threshold surface coming from Eq.
�92�. Typically, scale free networks, as the Internet, own frac-
tal properties �46�, however in this case d0→� in the ther-
modynamic limit, so that the percolation threshold in these
networks becomes zero.

C. When two given communities do communicate

The answer to the fundamental question “when and how
much two given communities communicate” is encoded in
�̃0

�l,k� and �̃�l,k� which at T=0 means E0
�l,k� and E�l,k�, respec-

tively. Given the arbitrary pure graph �L0 ,�0�, and some
community structure assignment which splits the set of
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bonds �0 in n�n−1� /2 sets, �0=�l,k�0
�l,k�, at T=0, in the pure

graph the communities l and k communicate if and only if
E0

�l,k��0. We can understand the communication process as
follows. If suddenly, at a given initial time, appears an exter-
nal magnetic field h�k�, which acts uniformly only on the
spins of the kth community, these spins are forced to change
and, as a consequence, all the spins of the other communities
will have to suitably change in order to reach the new equi-
librium state. At finite temperature the new equilibrium state
will be reached after a relaxation time � which grows with
the size of the system. However in the limit T→0 there is no
thermal dissipation and the spin changes take place instanta-
neously. Therefore, if the external field �h�k� changes with
time with a constant velocity, say v�k�, from the relation
�m�l�� �̃�l,k����h�k�� extrapolated at T=0, we see that the
characteristic time t0

�l,k� to transmit a unit of information from
the community k to the community l in the pure model will
grow as

v�k�t0
�l,k� = �E0

�l,k��−1. �112�

Similarly, in the random model having a matrix of added
connectivities c, the communities l and k communicate with
a characteristic time given by

v�k�t�l,k� = �E�l,k��−1. �113�

From Eq. �111� we see that in the pure model, if E0
�l,k�=0, the

two communities l and k cannot communicate �t0
�l,k�→��, but

for any arbitrary small c�l,k��0 they communicate and the
characteristic time decays with c approximately as �recall
that for any l is always E0

�l,l�1�

v�k�t�l,k� � �E0
�l,k� + E0

�l,l�E0
�k,k�c�l,k��−1. �114�

Similar relations hold also at finite T provided the velocity of
the signal, v�k�, be sufficiently small so that �� t0

�l,k� or �
� t�l,k�.

In general if, due to the birth of some giant connected
component in the pure model, one has E0

�l,k�→� in the ther-
modynamic limit, correspondingly we have t0

�l,k�→0, and
then also t�l,k�→0; i.e., the communities communicate instan-
taneously �they percolate�. However, in the random model,
even if E0

�l,k� is finite, provided nonzero, when c approaches
the percolation threshold surface cc, given by Eq. �92�, then
we have t�l,k�→0. Of course intermediate situations will give
rise to finite values of t�l,k�. In Eq. �111� the matrix E0 repre-
sents an input data. In general, it can be sampled efficiently
by simple simulated annealing procedures by using Eq. �94�
since the problem is mapped to an unfrustrated Ising model
��J0

�l,k�0�.
We recall that there is no limitation in the choice of the

graph �L0 ,�0� and that the statistical mechanical framework
provided through Eqs. �93� and �94� and Eqs. �107�–�110� is
complete and exact. Note in particular that two given com-
munities l and k, when immersed in a context of more com-
munities, can communicate even if there is no bond between
them, �0

�l,k�= �0	, due to the presence of one �or more� chain
of communities other than l and k that start from l and arrive
to k through a sequence of, say m, sets �0

�l,l1� , . . . ,�0
�lm,k�. In

other words, if we activate all the couplings of the set �0,

��J0
�l�,k���0	, Eq. �94� takes into account that a message can

go through any of the different paths of communities. We
point out also that, in the pure model, having some bonds
between the lth and kth communities does not ensure that the
condition E0

�l,k��0 be satisfied. From Eq. �109� we see in fact
that for having E0

�l,k��0 it is necessary that the number of
paths between the lth and the kth communities be at least of
order N. Note also that such a requirement does not exclude
the possibility that even a single bond between the two com-
munities be enough, provided this bond has a very high be-
tweenness. It should be then clear that an analysis of the
given graph �L0 ,�0� based only on simple algorithms mak-
ing use of the adjacency matrix, and that are therefore local,
can never capture global features as the ones we have eluci-
dated above and that determine the real communication
properties of the network.

D. Percolation vs community structure

The analysis of the previous paragraph suggests also a
possible criterion to detect community structures. Our idea to
detect community structures comes from the physical picture
of percolation. Given an arbitrary graph �L0 ,�0�, and an hy-
pothetical number of communities n, we look for the parti-
tion �L0=�l=1

n L0
�l� ,�0=�l,k

n �0
�l,k�� such that the resulting com-

munity’s structure has minimal communication, i.e.,
according to the previous paragraph, we look for the mini-
mization of the sum of the nondiagonal matrix elements of
the matrix E0. It is possible to make more precise this crite-
rion by considering the modularity introduced by Newman
and Girvan. In �8�, given an arbitrary graph �L0 ,�0�, one
introduces a “measure” Q1=Q1��0�—known as
modularity—of the quality of assignment of vertices into
communities. It is defined as

Q1 = 

l

�e1
�l,l� − �a1

�l��2� , �115�

where: e1
�l,k�, with l�k, is the fraction of all bonds connecting

the two communities l and k, e1
�l,l� is the fraction of bonds

falling inside the community l, and a1
�l� is defined as a1

�l�

=
def


ke1
�l,k�, the fraction of all bonds having one or two ends in

the community l. The term �a1
�l��2 in Eq. �115� represents the

expected fraction of bonds falling inside the community l
when their ends are connected randomly. Thanks to the pres-
ence of the term �a1

�l��2 in Eq. �115�, Q1 gives measure 0
when one considers the trivial case in which �0 is a single
community �n=1�, and partitions that maximize Q1 corre-
spond to best community structures. Nothing however avoids
us to define another similar measure which takes into ac-
count not only bonds, but also, for example, paths of two
consecutive bonds. In general we can define

Qh = 

l

�eh
�l,l� − �ah

�l��2� , �116�

where now eh
�l,k� for l�k is the fraction of all paths of length

not greater than h connecting the two communities l and k,
eh

�l,l� is the fraction of all paths of length not greater than h

whose both ends are in the lth community, and ah
�l� =

def


keh
�l,k�
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is the total number of paths of length not greater than h
having one or both the ends in the community l. Again we
have that its square represents the expected fraction of paths
of length not greater than h having both ends inside the com-
munity l when they are connected randomly, and makes mea-
sures �116� nontrivial.

When we optimize Q1 with respect to all the possible
ways of assignment of vertices into communities, we are
looking for the best case �or the cases� in which there are
“few” bonds between different communities and “many” in-
side the same community. Similarly, when we optimize Qh
with respect to all the possible ways of assignment of verti-
ces into communities, we are looking for the best case �or the
cases� in which there are “few” paths of length �h whose
ends arrive in different communities and “many” paths
whose ends arrive in the same community. Clearly, the big-
ger h is, the stricter and demanding our definition of Qh is.
Consider for example that we are looking for an assignment
in two communities, n=2. An assignment optimal with re-
spect to Q1 will give typically many bonds inside each com-
munities and only a few between the two. On the other hand,
inside for instance the community 1, there may be many
paths of length not greater than h−1 converging at a same
vertex inside the community 1, vertex which in turn is con-
nected by a further bond to the community 2. Therefore, in
general, the above assignment of two communities will not
be the best assignment with respect to Qh, and in this ex-
ample Qh will be better optimized for just one community,
n=1. In general Qh will selected assignments such that be-
tween any two communities there are either “few” bonds or,
if there are “many” bonds, such bonds must have a small
betweenness, and the greater h is, the smaller such allowed
betweenness will be. More precisely, we see that there are
basically two regimes: when h�N /n, N /n being the typical
size of one community, the probability that a path of length
not greater than h leaves the community from which it starts,
say the kth one, depends only on the local topology near the
kth community and on its boundaries with the other nearest
communities, whereas when h�N /n this probability will be
highly affected by the value of N /n and will be very large for
small values of N /n; i.e., for the case of many communities.
Eventually, in the thermodynamic limit, for h→�, Qh will
select a community’s assignment such that for any two com-
munities there is zero betweenness and, in this limit, the
above definition of eh

�l,k�, up to a constant factor which is
independent of the community’s assignment, coincides with
Eqs. �108� and �109�. In this limit, in particular, if some
percolation takes place, the community’s structure that maxi-
mizes Qh will coincide with the ensemble of the finite and
infinite �percolating� connected clusters that form in the
graph.

We find that our approach for community detection has
some analogies to the random walks approach developed in
�16�. Actually, as stressed in �16�, there are many different
ways to define dynamical processes �with continuous or dis-
crete time� able to probe the community structure of net-
works having different features. In particular, given the ad-
jacency matrix of the given graph, Ai,j, we can distinguish
two family of dynamical processes built through the normal-
ized or unnormalized Laplacian operator. Our approach be-

longs to the second family so that uncontrolled large fluctua-
tions are involved when sampling the evolution operator
exp�−At� at large times and the method turns out to be in
principle inefficient. However, as explained before, in the
limit t→� our method does not need to sample the operator
exp�−At�, but only to evaluate the susceptibility of the un-
frustrated Hamiltonian model H0 at zero temperature via
simulated annealing. As has been pointed out in �16�, the
methods developed in �13,12�, which map the problem of
community detection to that of finding the ground state of a
suitable frustrated Potts model, are equivalent to considering
the modularity built through dynamical processes at small
but finite t �O�1� in adimensional units�. It is then clear that
our proposed method of community detection, although be
defined through an Hamiltonian model too, is completely
different from these other Hamiltonian methods. As men-
tioned in the introduction the reason is due to the fact that
our method is based on the correlation functions, and not on
the energies, and the correlation functions, even at equilib-
rium, have a well defined relationship with dynamics.

VI. MAPPING TO A NONRANDOM MODEL

In Ref. �20� we have made use of a general mapping: an
Ising model with random couplings and defined over a ran-
dom graph is mapped onto a nonrandom Ising model turning
out �in that specific case of just one community� an Ising
model defined over the fully connected graph � f, and having
only a constant long-range coupling, �J�I�, and a constant
short-range coupling, �J0

�I�, suitable tuned by the measures of
the graph-disorder and the coupling-disorder of the original
model via the identities: �J�I�=�J�
� and �J0

�I�=�J0
�
�. More

precisely, in Ref. �20� we saw that the mapping consisted of
two steps. In a first step we map the original model onto a
random Ising model with no more graph disorder and built
over � f. Then, in a second step we map the latter model onto
an Ising model with no more coupling disorder. Due to the
independence of the random matrix elements ci,j

�l,k� and of the
random couplings Ji,j

�l,k�, it is not difficult to generalize the

mapping to our case of n communities. By defining J̃i,j
�l,k� as

J̃�i,j�
�l,k� =

def

J�i,j�
�l,k�g�i,j�

�l,k�, g�i,j�
�l,k� = 0,1, �117�

after the first step, free energy �12� reads as

− �F =
def � dP̃�J̃�log�Z̃�f;J̃

� , �118�

where: � f is the “fully connected graph” obtained as union of
all the fully connected graphs for each community l and for
each couple of communities �l ,k�

� f =
def

�l� f
�l��l�k� f

�l,k�. �119�

Z̃�f
is the partition function of the random Ising model de-

fined over � f with the random Hamiltonian
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H̃J̃��	i	� =
def

− 

�i,j���f

J̃�i,j�	i	 j − 

l

h�l� 

i�L0

�l�
	i, �120�

and the J̃’s are distributed according to the measure dP̃�J̃�
given by

dP̃�J̃� =
def

�
l

�
i�j,i,j�L0

�l�
d�̃�l,l��J̃i,j

�l,l��

� �
l�k

�
i�L0

�l�,j�L0
�k�

d�̃�l,k��J̃i,j
�l,k�� , �121�

with

d�̃�i,j�
�l,k��J̃�i,j�

�l,k��=�d�0
�l,k��J�i,j�

�l,k�� , �i, j� � �0
�l,k�

d��l,k��J�i,j�
�l,k��p�l,k��g�i,j�

�l,k�� , �i, j� � � f
�l,k� \ �0

�l,k�,
�

�122�

d��l,k�� · � and p�l,k�� · � being the coupling and bond �Eq. �18��
measures of the original model introduced in Sec. II, and
d�0

�l,k��J0� /dJ0 the delta distribution around the given short-
range coupling J0

�l,k�. For the second step we have to use the
general rule of the mapping to map a random Ising model
built over a quenched graph to a nonrandom Ising model �the
related Ising model, whose quantities we label with a suffix
I� having suitable couplings �39�. Depending on whether we
are looking for the solution with label F or the solution with
label SG, the coupling or mapping substitutions are given by

�tanh��J̃�i,j�
�l,k��	 → �� d�̃�J̃�i,j�

�l,k��tanhl
��J̃�i,j�
�l,k��� , �123�

where l
=1 or 2 for 
=F or SG, respectively. We recall also
that there are no intermediate transformations mixing the F
and the SG solution: there are only two physical transforma-
tions, be F or SG, affecting simultaneously all the couplings.
After the second step, the free energy of the original problem
reads as

− �F = 

l



�i,j���0

�l�
log�cosh��J0

�l���

+ 

l�k



�i,j���0

�l,k�
log�cosh��J0

�l,k��� + �,

+ 

l



�i,j���f

�l�
� d�̃�i,j�

�l,k��J̃�i,j�
�l,k��log�cosh��J0

�l���

+ 

l�k



�i,j���f

�l,k�
� d�̃�i,j�

�l,k��J̃�i,j�
�l,k��log�cosh��J0

�l,k��� ,

�124�

where � is the nontrivial part of the free energy, whose den-
sity �, �and similarly any correlation function C� in the ther-
modynamic limit can be calculated through �I�CI�, the free
energy density �the correlation function� of the related Ising
model having couplings obeying Eq. �123� �60�.

VII. DERIVATION OF THE SELF-CONSISTENT
EQUATIONS

By using the above result, we are now able to derive Eqs.
�24�–�46�. To this aim we have to solve the thermodynamics
of the following related Ising model:

HI = − 

l

J0
�I;l,l� 


�i,j���0
�l�

	i	 j − 

l�k

J0
�I;l,k� 


�i,j���0
�l,k�

	i	 j

− 

l

J�I;l,l� 

�i,j���f

�l�
	i	 j − 


l�k

J�I;l,k� 

�i,j���f

�l,k�
	i	 j

− 

l

h�l� 

i�L0

�l�
	i. �125�

Note that the above couplings �uniform within each appro-
priate set� J0

�I;l,k� and J�I;l,k� are arbitrary. In fact, the mapping
requires to solve the thermodynamics of the related Ising
model with arbitrary adimensional couplings �J0

�I;l,k� and
�J�I;l,k� and only after to perform the mapping substitutions
�Eq. �123��. Therefore, as done in Ref. �20�, we find it
convenient—for physical and conventional reasons—to con-
sider not Hamiltonian �125� and transformations �123�, but
the following Hamiltonian and transformations:

HI = − 

l

J0
�I;l,l� 


�i,j���0
�l�

	i	 j − 

l�k

J0
�I;l,k� 


�i,j���0
�l,k�

	i	 j

− 

l

J�I;l,l�

N��l� 

�i,j���f

�l�
	i	 j − 


l�k

J�I;l,k�

N��l,k� 

�i,j���f

�l,k�
	i	 j

− 

l

h�l� 

i�L0

�l�
	i, �126�

�tanh�
J̃�i,j�

�l,k�

N�i,j�
�l,k���→ �� d��J̃�i,j�

�l,k��tanhl
��J̃�i,j�
�l,k���,

N�i,j�
�l,k� =

def�1, �i, j� � �0
�l,k�

N��l,k�, �i, j� � � f
�l,k� \ �0

�l,k�,
� �127�

where we have introduced the coefficient ��l,k�, giving the
total number of possible bonds between the lth and the kth
communities, via N�l,k�=��l,k�N

��l,k� =
def���l�, l = k

��l���k�, l � k ,
� �128�

where ��l� has been introduced in Sec. II and is related to the
size N�l� of the lth community via N�l�=��l�N.

By using now Eq. �18� in Eqs. �117�–�122�, from Eq.
�127� applied for large N, we obtain that, after solving the
thermodynamics of the related Ising model with Hamiltonian
�126�, the mapping transformations for any l ,k read as

�J�I;l,k� →
��l,k�

��k� �J�
;l,k�, �129�

�J0
�I;l,k� → �J0

�
;l,k�, �130�

where we have made use of Eq. �8� and of definitions
�25�–�28�. It is important to observe, from Eq. �129�, that,
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unlike the effective couplings �J�
;l,k�, the couplings �J�I;l,k�

of the related Ising model are symmetric.
Let us now solve related Ising model �126�. We have to

evaluate the following partition function:

ZI = 

�	i	

e−�HI. �131�

Up to terms O�1�HI can be rewritten as

HI = H0��J0
�I;l,k�	;�h�l�	;�	i	� − 


l

J�I;l,l�

2N��l� 

i�L0

�l�
	i�2

− 

l�k
� J�I;l,k�

2N��l,k� 

i�L0

�l,k�
	i�2

−
J�I;l,k�

2N��l,k� 

i�L0

�l�
	i�2

−
J�I;l,k�

2N��l,k� 

i�L0

�k�
	i�2� , �132�

where we have made use of the definition of
H0��J0

�l,k�	 ; �h�l�	 ; �	i	�, the Hamiltonian of the pure model
with couplings �J0

�l,k�	 and in the presence of the external
fields �h�l�	, and we have introduced

L0
�l,k� =

def

L0
�l� � L0

�k�. �133�

Equation �132� can be rewritten also as

HI = H0��J0
�I;l,k�	;�h�l�	;�	i	� − 


l

J�I;l,l�

2N��l� 

i�L0

�l�
	i�2

− 

l�k

J�I;l,k�

2N��l,k� 

i�L0

�l,k�
	i�2

+ 

l
� 


k,k�l

J�I;l,k�

2N��l,k� 

i�L0

�l�
	i�2� . �134�

We now proceed analogously to Ref. �20� by using the
Gaussian transformation to transform quadratic terms in lin-
ear terms coupled to n+n�n−1� /2 auxiliary fields that we
shall indicate with M�l� and M�l,k�. It is convenient to intro-
duce the following definitions:

Ĵ�I;l,l�

��l� =
def J�I;l,l�

��l� − 

k,k�l

J�I;l,k�

��l,k� , �135�

r�l,k� =
def�0, if J�I;l,k�  0

1, if J�I;l,k� � 0,
� �136�

and

r̂�l,l� =
def�0, if Ĵ�I;l,l�  0

1, if Ĵ�I;l,l� � 0.
� �137�

By using these definitions and Eq. �134�, after the Gaussian
transformations, the partition function ZI reads as

ZI = 

�	i	

� �
l

dM�l��
l�k

dM�l,k� exp��H0��J0
�I;l,k�	;�0	;�	i	��

� exp�− 

l

��Ĵ�I;l,l���M�l��2N

2��l� − 

l�k

��J�I;l,k���M�l,k��2N

2��l,k� �
� exp�


l

�Ĵ�I;l,l�ir̂�l,l�M�l�

��l� + �h�l�� 

i�L0

�l�
	i

+ 

l�k

�J�I;l,k�ir�l,k�M�l,k�

��l,k� 

i�L0

�l,k�
	i� , �138�

which, by using the definition of L0
�l,k� and

H0��J0
�l,k�	 ; �h�l�	 ; �	i	�, becomes

ZI = 

�	i	

� �
l

dM�l��
l�k

dM�l,k� exp��H0��J0
�I;l�,k��	;�H�l��	;�	i	�� � exp�− 


l

��Ĵ�I;l,l���M�l��2N

2��l� − 

l�k

��J�I;l,k���M�l,k��2N

2��l,k� � , �139�

where we have introduced

H�l� =
def �Ĵ�I;l,l�ır̂�l,l�M�l�

��l� + 

k,k�l

�J�I;l,k�ir�l,k�M�l,k�

��l,k� + �h�l�. �140�

For finite N we can exchange the sum over the 	i’s with the
integral and we get

ZI =� �
l

dM�l��
l�k

dM�l,k�e−NLI��M
�l�	;�M�l,k�	�, �141�

where

LI��M�l�	;�M�l,k�	� = 

l

��Ĵ�I;l,l���M�l��2

2��l�

+ 

l�k

��J�I;l,k���M�l,k��2

2��l,k�

+ 

l

��l��f0���J0
�I;l�,k��	;��H�l��	� , �142�

f0���J0
�l,k�	 ; ��h�l�	� being the free energy density of the pure

model with arbitrary couplings �J0
�l,k�	 and in the presence of

arbitrary external fields �h�l�	. By performing the saddle point
integration and
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��f0���J0
�I;l�,k��	;��h�l��	�
��h�l� = − m0

�l����J0
�I;l�,k��	;��h�l��	� ,

�143�

we arrive at the following system of equations for the auxil-
iary fields:

ir̂�l,l�M�l� = ��l�m0
�l����J0

�I;l�,k��	;��H�l��	� , �144�

ir�l,k�M�l,k� = ��l�m0
�l����J0

�I;l�,k��	;��H�l��	�

+ ��k�m0
�k����J0

�I;l�,k��	;��H�l��	� , �145�

where we have used �J�l,k��ir�l,k�
/J�l,k�=1 / ir�l,k�

and similarly

�Ĵ�l,l��ir�l,k�
/ Ĵ�l,l�=1 / ir�l,k�

. Equations �144� and �145� lead im-
mediately to identify the auxiliary fields with two indices, if
solution of the saddle point equations, as

ir�l,k�M�l,k� = ir̂�l,l�M�l� + ir̂�k,k�M�k�. �146�

If we now use Eq. �146� and definition �135� inside Eq. �140�
we see that the H�l�’s calculated at the saddle point simplify
in

H�l� = 

k

�J�I;l,k�ir̂�k,k�M�k�

��l,k� + �h�l�, �147�

so that system �144� is actually a system of n independent
equations in the n unknowns M�l�. We can get rid of the
imaginary unit by changing the set of variables from M�l� to
ir̂�k,k�M�k�. Furthermore, if we divide by ��l�, that is if we
define

m�l� =
def ir̂�l,l�M�l�

��l� , �148�

system �144� becomes

m�l� = m0
�l����J0

�I;l�,k��	;��H�l��	� , �149�

where the H�l�’s, as a function of the fields m�l�, have now the
form

H�l� = 

k

�J�I;l,k���l�m�l�

��l,k� + �h�l�. �150�

Finally, by performing mapping transformations �129� and
�130�, system of equations �149� and �150� gives system �24�
and �25� or, in its most general form, Eq. �39�. Similarly,
given a saddle point solution, by inserting Eqs. �148�–�150�
inside Eq. �142� we get the free energy density f I of the
related Ising model as

�f I = LI��m�l��	� + �f0���J0
�I;l�,k��	;��H�l��	� , �151�

where LI is defined through LI calculated at a given saddle
point

LI��m�l��	� = LI��M�sp;l���m�l��	�	;�M�sp;l�,k����m�l��	�	� ,

�152�

where M�sp;l���m�l��	� and M�sp;l,k���m�l��	� are the given solu-
tion of the saddle point equations, i.e., modulo the definitions

�148�, they satisfy Eqs. �149� and �150�. Finally, by using the
mapping transformations �129� and �130�, Eq. �152� provides
Landau free energy term �38� of the random model, or in its
more general form Eq. �40�. Of course, as can be checked
directly by deriving �f I ��f �
�, or more simply L�
��, with
respect to the external field �h�l�, the saddle points �mI

�l�	
��m�
;l�	�, solutions of the system �149� and �150� �Eq. �39��,
are the local magnetizations �	i���	i�l
�, for i� �L0

�l�	, of the
related Ising model �of the random model�. Nonlinear system
�39� may admit many solutions. The unstable solutions
which are not local minima of the functional LI do not have
any physical meaning and should be discarded by looking at
the Hessian of LI equipped with transformations �129� and
�130� and calculated at the saddle point. In general we may
have more then one stable solution. The saddle point solution
that turns out to be also the absolute minimum of the func-
tional LI equipped with transformations �129� and �130� cor-
responds, in the thermodynamic limit, to the leading physical
solution, the others being metastable states. Notice that, un-
like the case n=1, due to the fact that the saddle point solu-
tions live in a n-dimensional section of the original n+n�n
−1� /2 dimensional space, LI turns out to be quite different
from LI and in particular the Hessian of LI has nothing to
share with the Hessian of LI. Unfortunately the Hessian of
LI, which we recall has to be calculated through the second
derivatives of LI as a function of a generic point
�M�l�	 , �M�l,k�	 of the n+n�n−1� /2 dimensional space, has a
quite complicated form that does not seem to simplify even
if calculated at the saddle point. Note however that, given all
the solutions of self-consistent system �24� and �25� or Eq.
�39�, for any value of �, we can always understand which
one is the leading solution: the leading �and of course stable�
solution is the one that minimizes L�
�.

VIII. CONCLUSIONS

Motivated by the general issue “how two given commu-
nities influence each other” discussed in the introduction, or
in other words, “what are the laws regulating the metanet-
work,” we have formulated the problem through the analysis
of a generic disordered Ising model built up over a small-
world of communities �the metanetwork�, where short-range
couplings as well as long-range couplings are completely
arbitrary and the graph disorder is Poissonian. By generaliz-
ing the method we presented in Ref. �20�, we have then
solved this random model in terms of the pure one, where no
disorder is present. Resulting self-consistent equation �39� is
a sort of effective TAP equation in which each community
contributes as a metaspin, as if they were microscopic spins
immersed in a ferro or glassy material.

The consequences of such a general result are then ana-
lyzed both at finite and zero temperature �in the latter case
only for the unfrustrated case�. When the number of commu-
nities n is not large, besides ferromagnetism, relative antifer-
romagnetism among communities may arise if some of the
long-range couplings J’s have negative averages. However,
if the number of communities is large, n�1, the TAP-like
structure of the equations leads to many metastable states,
whose number, in the case in which the J’s have negative
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averages, may grow exponentially fast with n, and a glassy
scenario among communities takes place. In the latter case,
the system turns out to be highly sensitive to small variations
in the set of the many free parameters of the model, such as
the relative sizes of the communities, ��l�, the short-range or
the long-range couplings, the averages of the added connec-
tivities c�l,k�, etc. In other words, the free energy landscape
changes fast by changing the free parameters so that many
first-order phase transitions are expected when we vary these
parameters. In fact, in a tentative in modeling societies, be-
tween second- and first-order transitions, the latter are ex-
pected to be largely prevalent, consistently with the fact that
“unpredictable” behavior of human communities seems to be
a largely prevalent rule. Finally, at zero temperature the gen-
eral formula for relative susceptibilities �42� has provided us
the answer to the fundamental issue “when two given com-
munities do communicate.” We find that, unlike the pure
model, in the random model two communities l and k do
communicate as soon as c�l,k��0. However, the evaluation of
the corresponding characteristic time t�l,k� depends crucially
and in a nontrivial way on the susceptibilities of the pure
model in—and between—the two communities via Eqs.
�111�–�114�. In particular, when the matrix of the added con-
nectivities c�l,k� reaches the percolation threshold cc

�l,k� deter-
mined by Eq. �92�, the communities communicate instanta-
neously �at T=0�.

In conclusion, our analysis at finite or zero temperature
shows explicitly that methods aimed to study the communi-
cation properties and, more in general, the relationships
among communities, of a given network, cannot rely on a
local analysis in which the adjacency matrix is used only in
simple algorithms and/or correlations are not taken into ac-
count. Instead, starting from real data, it is possible to define
in a not ambiguous way a minimal model, a disordered Ising
model, able to take into account all the correlations, short-
and long-range like, present in the given network, and then
to capture, via effective TAP equations, the exact relation-
ships among the communities.
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APPENDIX A: PARTITION FUNCTION
FOR PERCOLATION

The term −L0, as a function of a generic c, is nothing else
than the logarithm of a degenerate partition function of the
lth community as follows:

L0
�l��c� = − lim

N→�

1

N��l� log� 

�	i	,i�L0

�l�
ec
i�L0

�l�	i �
�i,j���0

�l�
�1 + 	i	 j�� , �A1�

for the case of J0
�l,k�=0 for l�k, whereas in the general case one has

L0�c1, . . . ,cn� = − lim
N→�

1

N
log� 


�	i	,i��lL0
�l�

e
lcl
i�L0
�l�	i �

�i,j���l,k�0
�l,k�

�1 + 	i	 j�� . �A2�

APPENDIX B: DERIVATION OF EQS. (109) and (110)

From the definition of the susceptibility, at any tempera-
ture we have

�̃0
�l,l���J0

�l�;0� = lim
N→�



i�L0

�l�


 j��lL0
�l� ��	i	 j� − �	i��	 j��

N��l� .

�B1�

Now, we have to recall that in our small-world models one
has always �c0��c

�F�, where �c
�F� and �c0 are the inverse

critical temperatures of the model with and without the
added shortcuts, respectively �the random model and the
pure model�. Therefore if the random model is in the P re-
gion, also the pure model will be in its P region. We can
repeat the same identical argument for any parameter enter-
ing in our models. In particular, given �, if the given con-
nectivity are below the critical percolation surface, not only
the random model, but also the pure one will be in their P

region, so that in such a region Eq. �B1� becomes

�̃0
�l,l���J0

�l�;0� = lim
N→�



i�L0

�l�


 j��lL0
�l� �	i	 j�

N��l� . �B2�

Now, due to the fact that in the limit �→� two given spins
	i and 	 j are either infinitely parallel correlated or com-
pletely uncorrelated if they are, respectively, connected or
not by at least a chain of bonds J0;i,j �supposed here only
positive if any�, from we Eq. �B2� we get

lim
�→�

�̃0
�l,l���J0

�l�;0� = lim
N→�



i�L0

�l�

Ni
�l�

N��l� , �B3�

where Ni
�l� is defined as the number of vertices belonging to

the lth community �including i itself� which are reachable
from the site i�L0

�l� by at least one path of connected verti-
ces. Similarly we arrive at Eq. �110�.

COMMUNICATION AND CORRELATION AMONG COMMUNITIES PHYSICAL REVIEW E 80, 011142 �2009�

011142-21



�1� S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079
�2002�.

�2� S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks
�Oxford University Press, New York, 2003�.

�3� R. Pastor-Satorras and A. Vespignani, Evolution and Structure
of the Internet �Cambridge University Press, Cambridge,
2004�.

�4� M. Newman, A. L. Barabasi, and D. J. Watts, The Structure
and Dynamics of Networks �Princeton University Press,
Princeton, NJ, 2006�.

�5� G. Caldarelli, Scale-Free Networks �Oxford University Press,
New York, 2007�.

�6� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.
Mod. Phys. 80, 1275 �2008�.

�7� M. Blatt, S. Wiseman, and E. Domany, Phys. Rev. Lett. 76,
3251 �1996�.

�8� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
�2004�.

�9� M. E. J. Newman, Phys. Rev. E 69, 066133 �2004�.
�10� A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,

066111 �2004�.
�11� A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Colaiori,

Physica A 352, 669 �2005�.
�12� J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701

�2004�.
�13� R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, Phys. Rev.

E 70, 025101�R� �2004�.
�14� I. Derenyi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94,

160202 �2005�.
�15� S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, and A.

Rapisarda, Phys. Rev. E 75, 045102�R� �2007�.
�16� R. Lambiotte, J.-C. Delvenne, and M. Barahona, e-print

arXiv:0812.1770.
�17� N. Gulbahce and S. Lehmann, BioEssays 30�10�, 934 �2008�.
�18� B. Karrer, E. Levina, and M. E. J. Newman, Phys. Rev. E 77,

046119 �2008�.
�19� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.
�20� M. Ostilli and J. F. F. Mendes, Phys. Rev. E 78, 031102

�2008�.
�21� L. Onsager, J. Am. Chem. Soc. 58, 1486 �1936�.
�22� D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos. Mag.

35, 593 �1977�.
�23� P. Contucci, I. Gallo, and S. Ghirlanda, Mathematics and So-

ciety �Springer, Berlin �in press�.
�24� A. D. Sánchez, J. M. López, and M. A. Rodríguez, Phys. Rev.

Lett. 88, 048701 �2002�.
�25� M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond �World Scientific, Singapore, 1987�.
�26� K. H. Fischer and J. A. Hertz, Spin Glasses �Cambridge Uni-

versity Press, Cambridge, 1991�.
�27� L. Viana and A. J. Bray, J. Phys. C 18, 3037 �1985�.
�28� D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

�1975�.
�29� M. Mezard and G. Parisi, Eur. Phys. J. B 20, 217 �2001�.
�30� S. Franz, M. Leone, F. Ricci-Tersenghi, and R. Zecchina, Phys.

Rev. Lett. 87, 127209 �2001�.
�31� M. O. Hase, J. L. R. de Almeida, and S. R. Salinas, Eur. Phys.

J. B 47, 245 �2005�. See also references therein.
�32� F. Guerra, Commun. Math. Phys. 233, 1 �2003�.

�33� M. Talagrand, Ann. Math. 163, 221 �2006�.
�34� L. De Sanctis and F. Guerra, J. Stat. Phys. 132, 759 �2008�.

For exact bounds for the general case see S. Franz and M.
Leone, J. Stat. Phys. 111, 535 �2003�; L. De Sanctis, J. Stat.
Phys. 117, 785 �2004�; L. De Sanctis, A. Barra, and V. Folli, J.
Phys. A: Math. Theor. 41, 21500 �2008�.

�35� T. Nikoletopoulos, A. C. C. Coolen, I. Prez Castillo, N. S.
Skantzos, J. P. L. Hatchett, and B. Wemmenhove, J. Phys. A
37, 6455 �2004�.

�36� B. Wemmenhove, T. Nikoletopoulos, and J. P. L. Hatchett, J.
Stat. Mech.: Theory Exp. 2005, P11007.

�37� M. O. Hase and J. F. F. Mendes, J. Phys. A: Math. Theor. 41,
145002 �2008�.

�38� J. L. R. de Almeida, Eur. Phys. J. B 13, 289 �2000�.
�39� M. Ostilli, J. Stat. Mech.: Theory Exp. 2006, P10004.
�40� C. P. Herrero, Phys. Rev. E 77, 041102 �2008�.
�41� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 66, 016104 �2002�.
�42� C. Moore and M. E. J. Newman, Phys. Rev. E 62, 7059

�2000�.
�43� M. E. J. Newman, I. Jensen, and R. M. Ziff, Phys. Rev. E 65,

021904 �2002�.
�44� P. Erdös and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�45� B. B. Mandelbrot, The Fractal Geometry of Nature �Freeman,

New York, 1983�.
�46� G. Caldarelli, R. Marchetti, and L. Pietronero, Europhys. Lett.

52, 386 �2000�.
�47� A. Montanari and T. Rizzo, J. Stat. Mech.: Theory Exp. 2005,

P10011.
�48� G. Parisi and F. Slanina, J. Stat. Mech.: Theory Exp. 2006,

L02003.
�49� M. Chertkov and V. Y. Chernyak, J. Stat. Mech.: Theory Exp.

2006, P06009.
�50� Concerning for example �7�, where one studies the correlation

function of an unfrustrated q-states Potts model, requiring that
the partition ��l=1

n L�l� ,�l�k=1
n ��l,k�� found in this way coin-

cides with the intrinsic community structure of the given
graph, would imply that the vertices of the graph could be truly
described as q states variables, while in general, vertices can
have much more complex functions in the graph, and a de-
scription in terms of q states can be effectively used to repre-
sent only some of their functions as, e.g., the function of com-
munication.

�51� However, concerning the communication properties, as will
become clear later, if one knows that all the couplings associ-
ated to � are in average strictly positive, at zero temperature
the theory provides a general result which is completely inde-
pendent of the couplings.

�52� Even if, for simplicity, we formulate our small-world models
only through undirected shortcuts, as we shall show, the effec-
tive long-range couplings J’s entering the self-consistent equa-
tions and connecting two different communities are directed
couplings �that is nonsymmetric� when the sizes of the two
communities differ.

�53� Though perturbative loops expansions around the treelike ap-
proximation are possible, see �47–49�.

�54� See comments and references reported in �23�.
�55� In Ref. �20� we were mainly interested in the cases in which

�L0
�l� ,�0

�l�� is a regular lattice of dimension d0: we recall, how-
ever, that there is no restriction in the choice of the graph.

M. OSTILLI AND J. F. F. MENDES PHYSICAL REVIEW E 80, 011142 �2009�

011142-22



�56� For shortness, from now on, all the sums over the graph index
will be understood to run from 1 to n.

�57� If instead of normalization �3� we leave the �’s arbitrary, the
correlation functions must be divided by the sum of the �’s; as
m�F�=
l�

�l�m�F;l� /
l�
�l�.

�58� Of course we make the natural physical assumption that when
the saddle point equation admits only one solution this be a
stable solution.

�59� Note that the small-world model considered in �40� is built by
rewiring the bonds, rather than by adding a random connectiv-

ity, but for small probabilities p of rewiring or by adding ran-
dom bonds with small connectivity c, the two versions of the
models are expected to give nearly same results by identifying
p with c.

�60� See the discussion provided in the last part of Sec. III A 1 for
clarifying how to use the mapping for calculating physical cor-
relation functions.

�61� A short presentation of this work can be found in M. Ostilli
and J. F. F. Mendes, e-print arXiv:0812.0608.

COMMUNICATION AND CORRELATION AMONG COMMUNITIES PHYSICAL REVIEW E 80, 011142 �2009�

011142-23


